

Chapter 1 −− Getting Started

This book shows you how to write programs that run under Microsoft

Windows 98, Microsoft Windows NT 4.0, and Windows NT 5.0. These

programs are written in the C programming language and use the native

Windows application programming interfaces (APIs). As I'll discuss later

in this chapter, this is not the only way to write programs that run under

Windows. However, it is important to understand the Windows APIs

regardless of what you eventually use to write your code. As you probably

know, Windows 98 is the latest incarnation of the graphical operating

system that has become the de facto standard for IBM−compatible personal

computers built around 32−bit Intel microprocessors such as the 486 and

Pentium. Windows NT is the industrial−strength version of Windows that

runs on PC compatibles as well as some RISC (reduced instruction set

computing) workstations. There are three prerequisites for using this book.

First, you should be familiar with Windows 98 from a user's perspective.

You cannot hope to write applications for Windows without understanding

its user interface. For this reason, I suggest that you do your program

development (as well as other work) on a Windows−based machine using

Windows applications. Second, you should know C. If you don't know C,

Windows programming is probably not a good place to start. I recommend

that you learn C in a character−mode environment such as that offered

under the

Windows 98 MS−DOS Command Prompt window.

Windows programming sometimes involves aspects of C that don't show

up much in character−mode programming; in those cases, I'll devote some

discussion to them. But for the most part, you should have a good working

familiarity with the language, particularly with C structures and pointers.

Some knowledge of the standard C run−time library is helpful but not

required. Third, you should have installed on your machine a 32−bit C

compiler and development environment suitable for doing Windows

programming. In this book, I'll be assuming that you're using Microsoft

Visual C++ 6.0, which can be purchased separately or as a part of the

Visual Studio 6.0 package.

That's it. I'm not going to assume that you have any experience at all

programming for a graphical user interface such as Windows.

The Windows Environment

Windows hardly needs an introduction. Yet it's easy to forget the sea

change that Windows brought to office and home desktop computing.

Windows had a bumpy ride in its early years and was hardly destined to

conquer the desktop market.

A History of Windows

Soon after the introduction of the IBM PC in the fall of 1981, it became

evident that the predominant operating system for the PC (and

compatibles) would be MS−DOS, which originally stood for Microsoft

Disk Operating System. MS−DOS was a minimal operating system. For

the user, MS−DOS provided a command−line interface to commands such

as DIR and TYPE and loaded application programs into memory for

execution. For the application programmer, MS−DOS offered little more

than a set of function calls for doing file input/output (I/O). For other

tasks_in particular, writing text and sometimes graphics to the video

display_applications accessed the hardware of the PC directly. Due to

memory and hardware constraints, sophisticated graphical environments

were slow in coming to small computers. Apple Computer offered an

alternative to character−mode environments when it released its ill−fated

Lisa in January 1983, and then set a standard for graphical environments

with the Macintosh in January 1984. Despite the Mac's declining market

share, it is still considered the standard against which other graphical

environments are measured. All graphical environments, including the

Macintosh and Windows, are indebted to the pioneering work done at the

Xerox Palo Alto Research Center (PARC) beginning in the mid−1970s.

Windows was announced by Microsoft Corporation in November 1983

(post−Lisa but pre−Macintosh) and was released two years later in

November 1985. Over the next two years, Microsoft Windows 1.0 was

followed by several updates to support the international market and to

provide drivers for additional video displays and printers. Windows 2.0

was released in November 1987. This version incorporated several changes

to the user interface. The most significant of these changes involved the

use of overlapping windows rather than the "tiled" windows found in

Windows 1.0. Windows 2.0 also included enhancements to the keyboard

and mouse interface, particularly for menus and dialog boxes. Up until this

time, Windows required only an Intel 8086 or 8088 microprocessor

running in "real mode" to access 1 megabyte (MB) of memory.

Windows/386 (released shortly after Windows 2.0) used the "virtual 86"

mode of the Intel 386 microprocessor to window and multitask many DOS

programs that directly accessed hardware. For symmetry, Windows 2.1

was renamed Windows/286. Windows 3.0 was introduced on May 22,

1990. The earlier Windows/286 and Windows/386 versions were merged

into one product with this release. The big change in Windows 3.0 was the

support of the 16−bit protected−mode operation of Intel's 286, 386, and

486 microprocessors. This gave Windows and Windows applications

access to up to 16 megabytes of memory. The Windows "shell" programs

for running programs and maintaining files were completely revamped.

Windows 3.0 was the first version of Windows to gain a foothold in the

home and the office.

Any history of Windows must also include a mention of OS/2, an

alternative to DOS and Windows that was originally developed by

Microsoft in collaboration with IBM. OS/2 1.0 (character−mode only) ran

on the Intel 286 (or later) microprocessors and was released in late 1987.

The graphical Presentation Manager (PM) came about with OS/2 1.1 in

October 1988. PM was originally supposed to be a protected−mode version

of Windows, but the graphical API was changed to such a degree that it

proved difficult for software manufacturers to support both platforms. By

September 1990, conflicts between IBM and Microsoft reached a peak and

required that the two companies go their separate ways. IBM took over

OS/2 and Microsoft made it clear that Windows was the center of their

strategy for operating systems. While OS/2 still has some fervent admirers,

it has not nearly approached the popularity of Windows. Microsoft

Windows version 3.1 was released in April 1992. Several significant

features included the TrueType font technology (which brought scaleable

outline fonts to Windows), multimedia (sound and music), Object Linking

and Embedding (OLE), and standardized common dialog boxes. Windows

3.1 ran only in protected mode and required a 286 or 386 processor with at

least 1 MB of memory. Windows NT, introduced in July 1993, was the

first version of Windows to support the 32−bit mode of the Intel 386, 486,

and Pentium microprocessors. Programs that run under Windows NT have

access to a 32−bit flat address space and use a 32−bit instruction set. (I'll

have more to say about address spaces a little later in this chapter.)

Windows NT was also designed to be portable to non−Intel processors, and

it runs on several RISC−based workstations. Windows 95 was introduced

in August 1995. Like Windows NT, Windows 95 also supported the 32−bit

programming mode of the Intel 386 and later microprocessors. Although it

lacked some of the features of Windows NT, such as high security and

portability to RISC machines, Windows 95 had the advantage of requiring

fewer hardware resources. Windows 98 was released in June 1998 and has

a number of enhancements, including performance improvements, better

hardware support, and a closer integration with the Internet and the World

Wide Web.

Aspects of Windows

Both Windows 98 and Windows NT are 32−bit preemptive multitasking

and multithreading graphical operating systems. Windows possesses a

graphical user interface (GUI), sometimes also called a "visual interface"

or "graphical windowing environment." The concepts behind the GUI date

from the mid−1970s with the work done at the Xerox PARC for machines

such as the Alto and the Star and for environments such as SmallTalk. This

work was later brought into the mainstream and popularized by Apple

Computer and Microsoft. Although somewhat controversial for a while, it

is now quite obvious that the GUI is (in the words of Microsoft's Charles

Simonyi) the single most important "grand consensus" of the

personal−computer industry. All GUIs make use of graphics on a

bitmapped video display. Graphics provides better utilization of screen real

estate, a visually rich environment for conveying information, and the

possibility of a WYSIWYG (what you see is what you get) video display

of graphics and formatted text prepared for a printed document.

In earlier days, the video display was used solely to echo text that the user

typed using the keyboard. In a graphical user interface, the video display

itself becomes a source of user input. The video display shows various

graphical objects in the form of icons and input devices such as buttons and

scroll bars. Using the keyboard (or, more directly, a pointing device such

as a mouse), the user can directly manipulate these objects on the screen.

Graphics objects can be dragged, buttons can be pushed, and scroll bars

can be scrolled.

The interaction between the user and a program thus becomes more

intimate. Rather than the one−way cycle of information from the keyboard

to the program to the video display, the user directly interacts with the

objects on the display.

Users no longer expect to spend long periods of time learning how to use

the computer or mastering a new program. Windows helps because all

applications have the same fundamental look and feel.

 The program occupies a window_usually a rectangular area on the screen.

Each window is identified by a caption bar. Most program functions are

initiated through the program's menus. A user can view the display of

information too large to fit on a single screen by using scroll bars. Some

menu items invoke dialog boxes, into which the user enters additional

information.

 One dialog box in particular, that used to open a file, can be found in

almost every large Windows program. This dialog box looks the same (or

nearly the same) in all of these Windows programs, and it is almost always

invoked from the same menu option.

Once you know how to use one Windows program, you're in a good

position to easily learn another. The menus and dialog boxes allow a user

to experiment with a new program and explore its features. Most Windows

programs have both a keyboard interface and a mouse interface. Although

most functions of Windows programs can be controlled through the

keyboard, using the mouse is often easier for many chores.

From the programmer's perspective, the consistent user interface results

from using the routines built into Windows for constructing menus and

dialog boxes. All menus have the same keyboard and mouse interface

because Windows_rather than the application program_handles this job.

To facilitate the use of multiple programs, and the exchange of information

among them, Windows supports multitasking. Several Windows programs

can be displayed and running at the same time. Each program occupies a

window on the screen. The user can move the windows around on the

screen, change their sizes, switch between different programs, and transfer

data from one program to another. Because these windows look something

like papers on a desktop (in the days before the desk became dominated by

the computer itself, of course), Windows is sometimes said to use a

"desktop metaphor" for the display of multiple programs. Earlier versions

of Windows used a system of multitasking called "nonpreemptive."

This meant that Windows did not use the system timer to slice processing

time between the various programs running under the system. The

programs themselves had to voluntarily give up control so that other

programs could run. Under Windows NT and Windows 98, multitasking is

preemptive and programs themselves can split into multiple threads of

execution that seem to run concurrently.

An operating system cannot implement multitasking without doing

something about memory management. As new programs are started up

and old ones terminate, memory can become fragmented. The system must

be able to consolidate free memory space. This requires the system to move

blocks of code and data in memory. Even Windows 1.0, running on an

8088 microprocessor, was able to perform this type of memory

management. Under real−mode restrictions, this ability can only be

regarded as an astonishing feat of software engineering. In Windows 1.0,

the 640−kilobyte (KB) memory limit of the PC's architecture was

effectively stretched without requiring any additional memory. But

Microsoft didn't stop there: Windows 2.0 gave the Windows applications

access to expanded memory (EMS), and Windows 3.0 ran in protected

mode to give Windows applications access to up to 16 MB of extended

memory.

 Windows NT and Windows 98 blow away these old limits by being

full−fledged 32−bit operating systems with flat memory space. Programs

running in Windows can share routines that are located in other files called

"dynamic−link libraries." Windows includes a mechanism to link the

program with the routines in the dynamic−link libraries at run time.

Windows itself is basically a set of dynamic−link libraries.

Windows is a graphical interface, and Windows programs can make full

use of graphics and formatted text on both the video display and the printer.

A graphical interface not only is more attractive in appearance but also can

impart a high level of information to the user. Programs written for

Windows do not directly access the hardware of graphics display devices

such as the screen and printer. Instead, Windows includes a graphics

programming language (called the Graphics Device Interface, or GDI) that

allows the easy display of graphics and formatted text. Windows

virtualizes display hardware. A program written for Windows will run with

any video board or any printer for which a Windows device driver is

available. The program does not need to determine what type of device is

attached to the system.

Putting a device−independent graphics interface on the IBM PC was not

an easy job for the developers of Windows. The PC design was based on

the principle of open architecture. Third−party hardware manufacturers

were encouraged to develop peripherals for the PC and have done so in

great number.

Although several standards have emerged, conventional MS−DOS

programs for the PC had to individually support many different hardware

configurations. It was fairly common for an MS−DOS word−processing

program to be sold with one or two disks of small files, each one supporting

a particular printer. Windows programs do not require these drivers

because the support is part of Windows.

Dynamic Linking

Central to the workings of Windows is a concept known as "dynamic

linking." Windows provides a wealth of function calls that an application

can take advantage of, mostly to implement its user interface and display

text and graphics on the video display. These functions are implemented in

dynamic−link libraries, or DLLs. These are files with the extension .DLL

or sometimes .EXE, and they are mostly located in the

\WINDOWS\SYSTEM subdirectory under Windows 98 and the

\WINNT\SYSTEM and

\WINNT\SYSTEM32 subdirectories under Windows NT.

In the early days, the great bulk of Windows was implemented in just three

dynamic−link libraries. These represented the three main subsystems of

Windows, which were referred to as Kernel, User, and GDI. While the

number of subsystems has proliferated in recent versions of Windows,

most function calls that a typical Windows program makes will still fall in

one of these three modules. Kernel (which is currently implemented by the

16−bit KRNL386.EXE and the 32−bit KERNEL32.DLL) handles all the

stuff that an operating system kernel traditionally handles_memory

management, file I/O, and tasking. User (implemented in the 16−bit

USER.EXE and the 32−bit USER32.DLL) refers to the user interface, and

implements all the windowing logic. GDI (implemented in the 16−bit

GDI.EXE and the 32−bit GDI32.DLL) is the Graphics Device Interface,

which allows a program to display text and graphics on the screen and

printer.

Windows 98 supports several thousand function calls that applications can

use. Each function has a descriptive name, such as CreateWindow. This

function (as you might guess) creates a window for your program. All the

Windows functions that an application may use are declared in header files.

In your Windows program, you use the Windows function calls in

generally the same way you use C library functions such as strlen. The

primary difference is that the machine code for C library functions is linked

into your program code, whereas the code for Windows functions is located

outside of your program in the DLLs.

When you run a Windows program, it interfaces to Windows through a

process called "dynamic linking." A Windows .EXE file contains

references to the various dynamic−link libraries it uses and the functions

therein. When a Windows program is loaded into memory, the calls in the

program are resolved to point to the entries of the DLL functions, which

are also loaded into memory if not already there.

When you link a Windows program to produce an executable file, you must

link with special "import libraries" provided with your programming

environment. These import libraries contain the dynamic−link library

names and reference information for all the Windows function calls. The

linker uses this information to construct the table in the .EXE file that

Windows uses to resolve calls to Windows functions when loading the

program.

Windows Programming Options

To illustrate the various techniques of Windows programming, this book

has lots of sample programs. These programs are written in C and use the

native Windows APIs. I think of this approach as "classical" Windows

programming. It is how we wrote programs for Windows 1.0 in 1985, and

it remains a valid way of programming for Windows today.

APIs and Memory Models

To a programmer, an operating system is defined by its API. An API

encompasses all the function calls that an application program can make of

an operating system, as well as definitions of associated data types and

structures. In Windows, the API also implies a particular program

architecture that we'll explore in the chapters ahead. Generally, the

Windows API has remained quite consistent since Windows 1.0. A

Windows programmer with experience in Windows 98 would find the

source code for a Windows 1.0 program very familiar. One way the API

has changed has been in enhancements. Windows 1.0 supported fewer than

450 function calls; today there are thousands.

The biggest change in the Windows API and its syntax came about during

the switch from a 16−bit architecture to a 32−bit architecture. Versions 1.0

through 3.1 of Windows used the so−called segmented memory mode of

the 16−bit Intel 8086, 8088, and 286 microprocessors, a mode that was also

supported for compatibility purposes in the 32−bit Intel microprocessors

beginning with the 386.

The microprocessor register size in this mode was 16 bits, and hence the C

int data type was also 16 bits wide. In the segmented memory model,

memory addresses were formed from two components_a 16−bit segment

pointer and a 16−bit offset pointer. From the programmer's perspective, this

was quite messy and involved differentiating between long, or far, pointers

(which involved both a segment address and an offset address) and short,

or near, pointers (which involved an offset address with an assumed

segment address).

Beginning in Windows NT and Windows 95, Windows supported a 32−bit

flat memory model using the 32−bit modes of the Intel 386, 486, and

Pentium processors. The C int data type was promoted to a 32−bit value.

Programs written for 32−bit versions of Windows use simple 32−bit

pointer values that address a flat linear address space.

The API for the 16−bit versions of Windows (Windows 1.0 through

Windows 3.1) is now known as Win16. The API for the 32−bit versions of

Windows (Windows 95, Windows 98, and all versions of Windows NT) is

now known as Win32. Many function calls remained the same in the

transition from Win16 to Win32, but some needed to be enhanced. For

example, graphics coordinate points changed from 16−bit values in Win16

to 32−bit values in Win32. Also, some Win16 function calls returned a

two−dimensional coordinate point packed in a 32−bit integer. This was not

possible in Win32, so new function calls were added that worked in a

different way.

All 32−bit versions of Windows support both the Win16 API to ensure

compatibility with old applications and the Win32 API to run new

applications. Interestingly enough, this works differently in Windows NT

than in Windows 95 and Windows 98. In Windows NT, Win16 function

calls go through a translation layer and are converted to Win32 function

calls that are then processed by the operating system. In Windows 95 and

Windows 98, the process is opposite that: Win32 function calls go through

a translation layer and are converted to Win16 function calls to be

processed by the operating system. At one time, there were two other

Windows API sets (at least in name). Win32s ("s" for "subset") was an

API that allowed programmers to write 32−bit applications that ran under

Windows 3.1.

This API supported only 32−bit versions of functions already supported by

Win16. Also, the Windows 95 API was once called Win32c ("c" for

"compatibility"), but this term has been abandoned. At this time, Windows

NT and Windows 98 are both considered to support the Win32 API.

However, each operating system supports some features not supported by

the other. Still, because the overlap is considerable, it's possible to write

programs that run under both systems. Also, it's widely assumed that the

two products will be merged at some time in the future.

Language Options

Using C and the native APIs is not the only way to write programs for

Windows 98. However, this approach offers you the best performance, the

most power, and the greatest versatility in exploiting the features of

Windows. Executables are relatively small and don't require external

libraries to run (except for the Windows DLLs themselves, of course).

Most importantly, becoming familiar with the API provides you with a

deeper understanding of Windows internals, regardless of how you

eventually write applications for Windows.

Although I think that learning classical Windows programming is

important for any Windows programmer, I don't necessarily recommend

using C and the API for every Windows application. Many

programmers_particularly those doing in−house corporate programming

or those who do recreational programming at home_enjoy the ease of

development environments such as Microsoft Visual Basic or Borland

Delphi (which incorporates an object−oriented dialect of Pascal). These

environments allow a programmer to focus on the user interface of an

application and associate code with user interface objects.

Among professional programmers_particularly those who write

commercial applications_Microsoft Visual C++ with the Microsoft

Foundation Class Library (MFC) has been a popular alternative in recent

years. MFC encapsulates many of the messier aspects of Windows

programming in a collection of C++ classes. Jeff Prosise's Programming

Windows with MFC, Second Edition (Microsoft Press, 1999) provides

tutorials on MFC. Most recently, the popularity of the Internet and the

World Wide Web has given a big boost to Sun

Obviously, there's hardly any one right way to write applications for

Windows. More than anything else, the nature of the application itself

should probably dictate the tools. But learning the Windows API gives you

vital insights into the workings of Windows that are essential regardless of

what you end up using to actually do the coding. Windows is a complex

system; putting a programming layer on top of the API doesn't eliminate

the complexity_it merely hides it. Sooner or later that complexity is going

to jump out and bite you in the leg. Knowing the API gives you a better

chance at recovery. Any software layer on top of the native Windows API

necessarily restricts you to a subset of full functionality. You might find,

for example, that Visual Basic is ideal for your application except that it

doesn't allow you to do one or two essential chores. In that case, you'll have

to use native API calls. The API defines the universe in which we as

Windows programmers exist.

 No approach can be more powerful or versatile than using this API

directly. MFC is particularly problematic. While it simplifies some jobs

immensely (such as OLE), I often find myself wrestling with other features

(such as the Document/View architecture) to get them to work as I want.

MFC has not been the Windows programming panacea that many hoped

for, and few people would characterize it as a model of good

object−oriented design. MFC programmers benefit greatly from

understanding what's going on in class definitions they use, and find

themselves frequently consulting MFC source code. Understanding that

source code is one of the benefits of learning the Windows API.

The Programming Environment

In this book, I'll be assuming that you're running Microsoft Visual C++ 6.0,

which comes in Standard, Professional, and Enterprise editions. The

less−expensive Standard edition is fine for doing the programs in this book.

Visual C++ is also part of Visual Studio 6.0.

The Microsoft Visual C++ package includes more than the C compiler and

other files and tools necessary to compile and link Windows programs. It

also includes the Visual C++ Developer Studio, an environment in which

you can edit your source code; interactively create resources such as icons

and dialog boxes; and edit, compile, run, and debug your programs. If

you're running Visual C++ 5.0, you might need to get updated header files

and import libraries for Windows 98 and Windows NT 5.0. These are

available at Microsoft's web site.

 Go to http://www.microsoft.com/msdn/, and choose Downloads and then

Platform SDK ("software development kit"). You'll be able to download

and install the updated files in directories of your choice. To direct the

Microsoft Developer Studio to look in these directories, choose Options

from the Tools menu and then pick the Directories tab. The msdn portion

of the Microsoft URL above stands for Microsoft Developer Network. This

is a program that provides developers with frequently updated CD−ROMs

containing much of what they need to be on the cutting edge of Windows

development. You'll probably want to investigate subscribing to MSDN

and avoid frequent downloading from Microsoft's web site.

API Documentation

This book is not a substitute for the official formal documentation of the

Windows API. That documentation is no longer published in printed form;

it is available only via CD−ROM or the Internet. When you install Visual

C++ 6.0, you'll get an online help system that includes API documentation.

You can get updates to that documentation by subscribing to MSDN or by

using Microsoft's Web−based online help system. Start by linking to

http://www.microsoft.com/msdn/, and select MSDN Library

Online. In Visual C++ 6.0, select the Contents item from the Help menu to

invoke the MSDN window. The API documentation is organized in a

tree−structured hierarchy. Find the section labeled Platform SDK. All the

documentation I'll be citing in this book is from this section. I'll show the

location of documentation using the nested levels starting with Platform

SDK separated by slashes. (I know the Platform SDK looks like a small

obscure part of the total wealth of MSDN knowledge, but I assure you that

it's the essential core of Windows programming.) For example, for

documentation on how to use the mouse in your Windows programs, you

can consult /Platform SDK/User Interface Services/User Input/Mouse

Input.

I mentioned before that much of Windows is divided into the Kernel, User,

and GDI subsystems. The kernel interfaces are in /Platform SDK/Windows

Base Services, the user interface functions are in /Platform SDK/User

Interface Services, and GDI is documented in /Platform SDK/Graphics and

Multimedia Services/GDI.

Your First Windows Program

Now it's time to do some coding. Let's begin by looking at a very short

Windows program and, for comparison, a short character−mode program.

These will help us get oriented in using the development environment and

going through the mechanics of creating and compiling a program.

A Character−Mode Model

A favorite book among programmers is The C Programming Language

(Prentice Hall, 1978 and 1988) by Brian W. Kernighan and Dennis M.

Ritchie, affectionately referred to as K&R. Chapter 1 of this book begins

with a C program that displays the words "hello, world." Here's the

program as it appeared on page 6 of the first edition of The C Programming

Language:

main ()

{

printf ("hello, world\n") ;

}

Yes, once upon a time C programmers used C run−time library functions

such as printf without declaring them first. But this is the '90s, and we like

to give our compilers a fighting chance to flag errors in our code. Here's

the revised code from the second edition of K&R:

#include <stdio.h>

main ()

{

printf ("hello, world\n") ;

}

This program still isn't really as small as it seems. It will certainly compile

and run just fine, but many programmers these days would prefer to

explicitly indicate the return value of the main function, in which case

ANSI C dictates that the function actually returns a value:

#include <stdio.h>

int main ()

{

printf ("hello, world\n") ;

return 0 ;

}

We could make this even longer by including the arguments to main, but

let's leave it at that_with an include statement, the program entry point, a

call to a run−time library function, and a return statement.

The Windows Equivalent

The Windows equivalent to the "hello, world" program has exactly the

same components as the character−mode version. It has an include

statement, a program entry point, a function call, and a return statement.

Here's the program:

/*−−−

−−−−−−−−−−−

HelloMsg.c −− Displays "Hello, Windows 98!" in a message box

(c) Charles Petzold, 1998

−−

−−−−−−−−−−*/

#include <windows.h>

9

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE

hPrevInstance,

PSTR szCmdLine, int iCmdShow)

{

MessageBox (NULL, TEXT ("Hello, Windows 98!"), TEXT

("HelloMsg"), 0) ;

return 0 ;

}

Before I begin dissecting this program, let's go through the mechanics of

creating a program in the

Visual C++ Developer Studio.

To begin, select New from the File menu. In the New dialog box, pick the

Projects tab. Select Win32

Application. In the Location field, select a subdirectory. In the Project

Name field, type the name of the project, which in this case is HelloMsg.

This will be a subdirectory of the directory indicated in the Location field.

The Create New Workspace button should be checked. The Platforms

section should indicate Win32. Choose OK.

A dialog box labeled Win32 Application

 − Step 1 Of 1 will appear. Indicate that you want to create an

Empty Project, and press the Finish button.

Select New from the File menu again. In the New dialog box, pick the Files

tab. Select C++ Source File.

The Add to Project box should be checked, and HelloMsg should be

indicated. Type HelloMsg.c in the File Name field. Choose OK. Now you

can type in the HELLOMSG.C file shown above. Or you can select the

Insert menu and the File as Text option to copy the contents of

HELLOMSG.C from the file on this book's companion CD−ROM.

Structurally, HELLOMSG.C is identical to the K&R "hello, world"

program. The header file STDIO.H has been replaced with WINDOWS.H,

the entry point main has been replaced with WinMain, and the C run−time

library function printf has been replaced with the Windows API function

MessageBox.

However, there is much in the program that is new, including several

strange−looking uppercase identifiers.

Let's start at the top.

The Header Files

HELLOMSG.C begins with a preprocessor directive that you'll find at the

top of virtually every Windows

program written in C:

#include <windows.h>

WINDOWS.H is a master include file that includes other Windows header

files, some of which also

include other header files. The most important and most basic of these

header files are:

· WINDEF.H Basic type definitions.

· WINNT.H Type definitions for Unicode support.

· WINBASE.H Kernel functions.

· WINUSER.H User interface functions.

· WINGDI.H Graphics device interface functions.

These header files define all the Windows data types, function calls, data

structures, and constant identifiers. They are an important part of Windows

documentation. You might find it convenient to use the Find In Files option

from the Edit menu in the Visual C++ Developer Studio to search through

these header files. You can also open the header files in the Developer

Studio and examine them directly.

An Architectural Overview

When programming for Windows, you're really engaged in a type of

object−oriented programming. This is most evident in the object you'll be

working with most in Windows, the object that gives Windows its name,

the object that will soon seem to take on anthropomorphic characteristics,

the object that might even show up in your dreams: the object known as

the "window." The most obvious windows adorning your desktop are

application windows. These windows contain a title bar that shows the

program's name, a menu, and perhaps a toolbar and a scroll bar. Another

type of window is the dialog box, which may or may not have a title bar.

Less obvious are the various push buttons, radio buttons, check boxes, list

boxes, scroll bars, and text−entry fields that adorn the surfaces of dialog

boxes. Each of these little visual objects is a window.

More specifically, these are called "child windows" or "control windows"

or "child window controls." The user sees these windows as objects on the

screen and interacts directly with them using the keyboard or the mouse.

Interestingly enough, the programmer's perspective is analogous to the

user's perspective. The window receives the user input in the form of

"messages" to the window. A window also uses messages to communicate

with other windows. Getting a good feel for messages is an important part

of learning how to write programs for Windows.

Here's an example of Windows messages: As you know, most Windows

programs have sizeable application windows. That is, you can grab the

window's border with the mouse and change the window's size. Often the

program will respond to this change in size by altering the contents of its

window. You might guess (and you would be correct) that Windows itself

rather than the application is handling all the messy code involved with

letting the user resize the window. Yet the application "knows" that the

window has been resized because it can change the format of what it

displays.

How does the application know that the user has changed the window's

size? For programmers accustomed to only conventional character−mode

programming, there is no mechanism for the operating system to convey

information of this sort to the user. It turns out that the answer to this

question is central to understanding the architecture of Windows. When a

user resizes a window,

Windows sends a message to the program indicating the new window size.

The program can then adjust the contents of its window to reflect the new

size. "Windows sends a message to the program." I hope you didn't read

that statement without blinking. What on earth could it mean? We're

talking about program code here, not a telegraph system. How can an

operating system send a message to a program? When I say that "Windows

sends a message to the program" I mean that Windows calls a function

within the program_a function that you write and which is an essential part

of your program's code. The parameters to this function describe the

particular message that is being sent by Windows and received by your

program. This function in your program is known as the "window

procedure."

You are undoubtedly accustomed to the idea of a program making calls to

the operating system. This is how a program opens a disk file, for example.

What you may not be accustomed to is the idea of an operating system

making calls to a program. Yet this is fundamental to Windows'

architecture.

Every window that a program creates has an associated window procedure.

This window procedure is a function that could be either in the program

itself or in a dynamic−link library. Windows sends a message to a window

by calling the window procedure. The window procedure does some

processing based on the message and then returns control to Windows.

More precisely, a window is always created based on a "window class."

The window class identifies the window procedure that processes

messages to the window. The use of a window class allows multiple

windows to be based on the same window class and hence use the same

window procedure. For example, all buttons in all Windows programs are

based on the same window class. This window class is associated with a

window procedure located in a Windows dynamic−link library that

processes messages to all the button windows. In object−oriented

programming, an object is a combination of code and data. A window is an

object.

The code is the window procedure. The data is information retained by the

window procedure and information retained by Windows for each window

and window class that exists in the system.

A window procedure processes messages to the window. Very often these

messages inform a window of user input from the keyboard or the mouse.

For example, this is how a push−button window knows that it's being

"clicked." Other messages tell a window when it is being resized or when

the surface of the window needs to be redrawn. When a Windows program

begins execution, Windows creates a "message queue" for the program.

This message queue stores messages to all the windows a program might

create. A Windows application includes a short chunk of code called the

"message loop" to retrieve these messages from the queue and dispatch

them to the appropriate window procedure. Other messages are sent

directly to the window procedure without being placed in the message

queue.

If your eyes are beginning to glaze over with this excessively abstract

description of the Windows architecture, maybe it will help to see how the

window, the window class, the window procedure, the message queue, the

message loop, and the window messages all fit together in the context of a

real program.

The HELLOWIN Program

Creating a window first requires registering a window class, and that

requires a window procedure to process messages to the window. This

involves a bit of overhead that appears in almost every Windows program.

The HELLOWIN program, shown in Figure 3−1, is a simple program

showing mostly that overhead.

Figure 3−1. The HELLOWIN program.

HELLOWIN.C

/*−−−

−−−−−−−−−

HELLOWIN.C −− Displays "Hello, Windows 98!" in client area

(c) Charles Petzold, 1998

−−

−−−−−−−−*/

#include <windows.h>

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM,

LPARAM) ;

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE

hPrevInstance,

PSTR szCmdLine, int iCmdShow)

{

static TCHAR szAppName[] = TEXT ("HelloWin") ;

HWND hwnd ;

MSG msg ;

WNDCLASS wndclass ;

wndclass.style = CS_HREDRAW | CS_VREDRAW ;

wndclass.lpfnWndProc = WndProc ;

wndclass.cbClsExtra = 0 ;

wndclass.cbWndExtra = 0 ;

wndclass.hInstance = hInstance ;

wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;

wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;

wndclass.hbrBackground = (HBRUSH) GetStockObject

(WHITE_BRUSH) ;

wndclass.lpszMenuName = NULL ;

wndclass.lpszClassName = szAppName ;

if (!RegisterClass (&wndclass))

{

MessageBox (NULL, TEXT ("This program requires Windows NT!"),

szAppName, MB_ICONERROR) ;

return 0 ;

}

hwnd = CreateWindow (szAppName, // window class name

TEXT ("The Hello Program"), // window caption

WS_OVERLAPPEDWINDOW, // window style

CW_USEDEFAULT, // initial x position

CW_USEDEFAULT, // initial y position

CW_USEDEFAULT, // initial x size

CW_USEDEFAULT, // initial y size

NULL, // parent window handle

NULL, // window menu handle

hInstance, // program instance handle

NULL) ; // creation parameters

ShowWindow (hwnd, iCmdShow) ;

UpdateWindow (hwnd) ;

while (GetMessage (&msg, NULL, 0, 0))

{

TranslateMessage (&msg) ;

DispatchMessage (&msg) ;

}

return msg.wParam ;

}

LRESULT CALLBACK WndProc (HWND hwnd, UINT message,

WPARAM wParam, LPARAM lParam)

{

HDC hdc ;

PAINTSTRUCT ps ;

RECT rect ;

switch (message)

{

case WM_CREATE:

PlaySound (TEXT ("hellowin.wav"), NULL, SND_FILENAME |

SND_ASYNC) ;

return 0 ;

case WM_PAINT:

hdc = BeginPaint (hwnd, &ps) ;

GetClientRect (hwnd, &rect) ;

DrawText (hdc, TEXT ("Hello, Windows 98!"), −1, &rect,

DT_SINGLELINE | DT_CENTER | DT_VCENTER) ;

EndPaint (hwnd, &ps) ;

return 0 ;

case WM_DESTROY:

PostQuitMessage (0) ;

return 0 ;

}

return DefWindowProc (hwnd, message, wParam, lParam) ;

}

This program creates a normal application window, as shown in Figure

3−2, and displays, "Hello,

Windows 98!" in the center of that window. If you have a sound board

installed, you will also hear me

saying the same thing.

Figure 3−2. The HELLOWIN window.

A couple of warnings: If you use Microsoft Visual C++ to create a new

project for this program, you

need to make an addition to the object libraries the linker uses. Select the

Settings option from the

Project menu, and pick the Link tab. Select General from the Category list

box, and add WINMM.LIB

("Windows multimedia") to the Object/Library Modules text box. You

need to do this because

HELLOWIN makes use of a multimedia function call, and the multimedia

object library isn't included in a default project. Otherwise you'll get an

error message from the linker indicating that the PlaySound function is

unresolved.

HELLOWIN accesses a file named HELLOWIN.WAV, which is on the

companion CD−ROM in the

HELLOWIN directory. When you execute HELLOWIN.EXE, the default

directory must be HELLOWIN.

This is the case when you execute the program within Visual C++, even

though the executable will be in the RELEASE or DEBUG subdirectory of

HELLOWIN.

Thinking Globally

Most of HELLOWIN.C is overhead found in virtually every Windows

program. Nobody really memorizes all the syntax to write this overhead;

generally, Windows programmers begin a new program by copying an

existing program and making appropriate changes to it. You're free to use

the programs on the companion CD−ROM in this manner.

I mentioned above that HELLOWIN displays the text string in the center

of its window. That's not precisely true. The text is actually displayed in

the center of the program's "client area," which in Figure

3−2 is the large white area within the title bar and the sizing border. This

distinction will be important to us; the client area is that area of the window

in which a program is free to draw and deliver visual output to the user.

When you think about it, this program has an amazing amount of

functionality in its 80−odd lines of code. You can grab the title bar with

the mouse and move the window around the screen. You can grab the

sizing borders and resize the window. When the window changes size, the

program automatically repositions the text string in the center of its client

area. You can click the maximize button and zoom HELLOWIN to fill the

screen. You can click the minimize button and clear it from the screen. You

can invoke all these options from the system menu (the small icon at the

far left of the title bar). You can also close the window to terminate the

program by selecting the Close option from the system menu, by clicking

the close button at the far right of the title bar, or by double−clicking the

system menu icon. We'll be examining this program in detail for much of

the remainder of the chapter. First, however, let's take a more global look.

HELLOWIN.C has a WinMain function like the sample programs in the

first two chapters, but it also has a second function named WndProc. This

is the window procedure. (In conversation among Windows programmers,

it's called the "win prock.") Notice that there's no code in HELLOWIN.C

that calls

WndProc. However, there is a reference to WndProc in WinMain, which is

why the function is declared near the top of the program.

The Windows Function Calls

HELLOWIN makes calls to no fewer than 18 Windows functions. In the

order they occur, these functions (with a brief description) are:

· LoadIcon Loads an icon for use by a program.

· LoadCursor Loads a mouse cursor for use by a program.

GetStockObject Obtains a graphic object, in this case a brush used for

painting the window's background.

· RegisterClass Registers a window class for the program's window.

· MessageBox Displays a message box.

· CreateWindow Creates a window based on a window class.

· ShowWindow Shows the window on the screen.

· UpdateWindow Directs the window to paint itself.

· GetMessage Obtains a message from the message queue.

· TranslateMessage Translates some keyboard messages.

· DispatchMessage Sends a message to a window procedure.

· PlaySound Plays a sound file.

· BeginPaint Initiates the beginning of window painting.

· GetClientRect Obtains the dimensions of the window's client area.

· DrawText Displays a text string.

· EndPaint Ends window painting.

· PostQuitMessage Inserts a "quit" message into the message queue.

· DefWindowProc Performs default processing of messages.

These functions are described in the Platform SDK documentation, and

they are declared in various header files, mostly in WINUSER.H.

Creating a Window

Window Classes

A window class defines a set of behaviors that several windows might have

in common. For example, in a group of buttons, each button has a similar

behavior when the user clicks the button. Of course, buttons are not

completely identical; each button displays its own text string and has its

own screen coordinates. Data that is unique for each window is

called instance data.

Every window must be associated with a window class, even if your

program only ever creates one instance of that class. It is important to

understand that a window class is not a "class" in the C++ sense. Rather, it

is a data structure used internally by the operating system. Window classes

are registered with the system at run time. To register a new window class,

start by filling in a WNDCLASS structure:

https://msdn.microsoft.com/en-us/library/windows/desktop/ms633576(v=vs.85).aspx

 // Register the window class.

 const wchar_t CLASS_NAME[] = L"Sample Window Class";

 WNDCLASS wc = { };

 wc.lpfnWndProc = WindowProc;

 wc.hInstance = hInstance;

 wc.lpszClassName = CLASS_NAME;

You must set the following structure members:

 lpfnWndProc is a pointer to an application-defined function called

the window procedure or "window proc." The window procedure

defines most of the behavior of the window. We'll examine the

window procedure in detail later. For now, just treat this as a

forward reference.

 hInstance is the handle to the application instance. Get this value

from the hInstance parameter of wWinMain.

 lpszClassName is a string that identifies the window class.

Class names are local to the current process, so the name only needs to be

unique within the process. However, the standard Windows controls also

have classes. If you use any of those controls, you must pick class names

that do not conflict with the control class names. For example, the

window class for the button control is named "Button".

The WNDCLASS structure has other members not shown here. You can

set them to zero, as shown in this example, or fill them in. The MSDN

documentation describes the structure in detail.

Next, pass the address of the WNDCLASS structure to

the RegisterClass function. This function registers the window class with

the operating system.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms633576(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms633576(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms633586(v=vs.85).aspx

 RegisterClass(&wc);

Creating the Window

To create a new instance of a window, call

the CreateWindowEx function:

 HWND hwnd = CreateWindowEx(

 0, // Optional window styles.

 CLASS_NAME, // Window class

 L"Learn to Program Windows", // Window text

 WS_OVERLAPPEDWINDOW, // Window style

 // Size and position

 CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,

CW_USEDEFAULT,

 NULL, // Parent window

 NULL, // Menu

 hInstance, // Instance handle

 NULL // Additional application data

);

 if (hwnd == NULL)

 {

 return 0;

 }

https://msdn.microsoft.com/en-us/library/windows/desktop/ms632680(v=vs.85).aspx

You can read detailed parameter descriptions on MSDN, but here is a

quick summary:

 The first parameter lets you specify some optional behaviors for

the window (for example, transparent windows). Set this parameter

to zero for the default behaviors.

 CLASS_NAME is the name of the window class. This defines the

type of window you are creating.

 The window text is used in different ways by different types of

windows. If the window has a title bar, the text is displayed in the

title bar.

 The window style is a set of flags that define some of the look and

feel of a window. The constant WS_OVERLAPPEDWINDOW is

actually several flags combined with a bitwise OR. Together these

flags give the window a title bar, a border, a system menu,

and Minimize andMaximize buttons. This set of flags is the most

common style for a top-level application window.

 For position and size, the constant CW_USEDEFAULT means to

use default values.

 The next parameter sets a parent window or owner window for the

new window. Set the parent if you are creating a child window. For

a top-level window, set this to NULL.

 For an application window, the next parameter defines the menu

for the window. This example does not use a menu, so the value is

NULL.

 hInstance is the instance handle, described previously.

(See WinMain: The Application Entry Point.)

 The last parameter is a pointer to arbitrary data of type void*. You

can use this value to pass a data structure to your window

procedure. We'll show one possible way to use this parameter in

the section Managing Application State.

https://msdn.microsoft.com/en-us/library/windows/desktop/ff381406(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff381400(v=vs.85).aspx

CreateWindowEx returns a handle to the new window, or zero if the

function fails. To show the window—that is, make the window visible —

pass the window handle to the ShowWindow function:

 ShowWindow(hwnd, nCmdShow);

The hwnd parameter is the window handle returned

by CreateWindowEx. The nCmdShow parameter can be used to

minimize or maximize a window. The operating system passes this value

to the program through the wWinMain function.

Here is the complete code to create the window. Remember that

WindowProc is still just a forward declaration of a function.

 // Register the window class.

 const wchar_t CLASS_NAME[] = L"Sample Window Class";

 WNDCLASS wc = { };

 wc.lpfnWndProc = WindowProc;

 wc.hInstance = hInstance;

 wc.lpszClassName = CLASS_NAME;

 RegisterClass(&wc);

 // Create the window.

 HWND hwnd = CreateWindowEx(

 0, // Optional window styles.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms632680(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms633548(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms632680(v=vs.85).aspx

 CLASS_NAME, // Window class

 L"Learn to Program Windows", // Window text

 WS_OVERLAPPEDWINDOW, // Window style

 // Size and position

 CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,

CW_USEDEFAULT,

 NULL, // Parent window

 NULL, // Menu

 hInstance, // Instance handle

 NULL // Additional application data

);

 if (hwnd == NULL)

 {

 return 0;

 }

 ShowWindow(hwnd, nCmdShow);

Congratulations, you've created a window! Right now, the window does

not contain any content or interact with the user. In a real GUI

application, the window would respond to events from the user and the

operating system. The next section describes how window messages

provide this sort of interactivity.

Window Messages

A GUI application must respond to events from the user and from the

operating system.

 Events from the user include all of the ways that someone can

interact with your program: mouse clicks, key strokes, touch-

screen gestures, and so forth.

 Events from the operating system include anything "outside" of

the program that can affect how the program behaves. For

example, the user might plug in a new hardware device, or

Windows might enter a lower-power state (sleep or hibernate).

These events can occur at any time while the program is running, in

almost any order. How do you structure a program whose flow of

execution cannot be predicted in advance?

To solve this problem, Windows uses a message-passing model. The

operating system communicates with your application window by passing

messages to it. A message is simply a numeric code that designates a

particular event. For example, if the user presses the left mouse button,

the window receives a message with the following message code.

#define WM_LBUTTONDOWN 0x0201

Some messages have data associated with them. For example,

the WM_LBUTTONDOWN message includes the x-coordinate and y-

coordinate of the mouse cursor.

To pass a message to a window, the operating system calls the window

procedure registered for that window. (And now you know what the

window procedure is for.)

The Message Loop

An application will receive thousands of messages while it runs.

(Consider that every keystroke and mouse-button click generates a

message.) Furthermore, an application can have several windows, each

with its own window procedure. How does the program receive all of

these messages and deliver them to the right window procedure? The

application needs a loop to get the messages and distpatch them to the

correct windows.

For each thread that creates a window, the operating system creates a

queue for window messages. This queue holds messages for all of the

windows that are created on that thread. The queue itself is hidden from

https://msdn.microsoft.com/en-us/library/windows/desktop/ms645607(v=vs.85).aspx

your progam. You can't manipulate the queue directly, but you can pull a

message from the queue by calling the GetMessage function.

MSG msg;

GetMessage(&msg, NULL, 0, 0);

This function removes the first message from the head of the queue. If the

queue is empty, the function blocks until another message is queued. The

fact that GetMessage blocks will not make your program unresponsive.

If there are no messages, there is nothing for the program to do. If you

need to perform background processing, you can create additional threads

that continue to run while GetMessagewaits for another message.

(See Avoiding Bottlenecks in Your Window Procedure.)

The first parameter of GetMessage is the address of a MSG structure. If

the function succeeds, it fills in the MSG structure with information

about the message, including the target window and the message code.

The other three parameters give you the ability to filter which messages

you get from the queue. In almost all cases, you will set these parameters

to zero.

Although the MSG structure contains information about the message, you

will almost never examine this structure directly. Instead, you will pass it

directly to two other functions.

TranslateMessage(&msg);

DispatchMessage(&msg);

The TranslateMessage function is related to keyboard input; it translates

keystrokes (key down, key up) into characters. You don't really need to

know how this function works; just remember to call it right

before DispatchMessage. The link to the MSDN documentation will give

you more information, if you're curious.

The DispatchMessage function tells the operating system to call the

window procedure of the window that is the target of the message. In

other words, the operating system looks up the window handle in its table

of windows, finds the function pointer associated with the window, and

invokes the function.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms644936(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644936(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff381408(v=vs.85).aspx#bottlenecks
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644936(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644958(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644958(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644955(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644934(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644934(v=vs.85).aspx

For example, suppose the user presses the left mouse button. This causes

a chain of events:

1. The operating system places a WM_LBUTTONDOWN message

on the message queue.

2. Your program calls the GetMessage function.

3. GetMessage pulls the WM_LBUTTONDOWN message from the

queue and fills in the MSG structure.

4. Your program calls

the TranslateMessage and DispatchMessage functions.

5. Inside DispatchMessage, the operating system calls your window

procedure.

6. Your window procedure can either respond to the message or

ignore it.

When the window procedure returns, it returns back

to DispatchMessage, which returns to the message loop for the next

message. As long as your program is running, messages will continue to

arrive on the queue. Therefore, you need a loop that continually pulls

messages from the queue and dispatches them. You can think of the loop

as doing the following:

// WARNING: Don't actually write your loop this way.

while (1)

{

 GetMessage(&msg, NULL, 0, 0);

 TranslateMessage(&msg);

 DispatchMessage(&msg);

}

As written, of course, this loop would never end. That's where the return

value for the GetMessage function comes in.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms645607(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644936(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644936(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms645607(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644958(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644955(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644934(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644934(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644934(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644936(v=vs.85).aspx

Normally,GetMessage returns a non-zero value. Whenever you want to

quit the application and break out of the message loop, simply call

thePostQuitMessage function.

 PostQuitMessage(0);

The PostQuitMessage function puts a WM_QUIT message on the

message queue. WM_QUIT is a special message: It

causes GetMessage to return zero, signaling the end of the message loop.

Here is the revised message loop.

// Correct.

MSG msg = { };

while (GetMessage(&msg, NULL, 0, 0))

{

 TranslateMessage(&msg);

 DispatchMessage(&msg);

}

As long as GetMessage returns a non-zero value, the expression in

the while loop evaluates to true. After you call PostQuitMessage, the

expression becomes false and the program breaks out of the loop. (One

interesting consequence of this behavior is that your window procedure

never receives a WM_QUIT message, so do not need a case statement

for this message in your window procedure.)

The next obvious question is: When should you call PostQuitMessage?

We'll return to this question in the topic Closing the Window, but first we

need to write our window procedure.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms644945(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644945(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms632641(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644936(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644936(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644945(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms632641(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644945(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff381396(v=vs.85).aspx

Posted Messages versus Sent Messages

The previous section talked about messages going onto a queue. In some

situations, the operating system will call a window procedure directly,

bypassing the queue.

The terminology for this distinction can be confusing:

 Posting a message means the message goes on the message queue,

and is dispatched through the message loop

(GetMessage andDispatchMessage).

 Sending a message means the message skips the queue, and the

operating system calls the window procedure directly.

For now, the distinction is not very important. The window procedure

handles all messages, but some messages bypass the queue and go

directly to your window procedure. However, it can make a difference if

your application communicates between windows. You can find a more

thorough discussion of this issue in the topic About Messages and

Message Queues.

Writing the Window Procedure

The DispatchMessage function calls the window procedure of the

window that is the target of the message. The window procedure has the

following signature.

LRESULT CALLBACK WindowProc(HWND hwnd, UINT uMsg,

WPARAM wParam, LPARAM lParam);

There are four parameters:

 hwnd is a handle to the window.

 uMsg is the message code; for example, the WM_SIZE message

indicates the window was resized.

 wParam and lParam contain additional data that pertains to the

message. The exact meaning depends on the message code.

LRESULT is an integer value that your program returns to Windows. It

contains your program's response to a particular message. The meaning of

this value depends on the message code. CALLBACK is the calling

convention for the function.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms644936(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644934(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644927(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644927(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644934(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms632646(v=vs.85).aspx

A typical window procedure is simply a large switch statement that

switches on the message code. Add cases for each message that you want

to handle.

switch (uMsg)

{

case WM_SIZE: // Handle window resizing

// etc

}

Additional data for the message is contained in

the lParam and wParam parameters. Both parameters are integer values

the size of a pointer width (32 bits or 64 bits). The meaning of each

depends on the message code (uMsg). For each message, you will need to

look up the message code on MSDN and cast the parameters to the

correct data type. Usually the data is either a numeric value or a pointer to

a structure. Some messages do not have any data.

For example, the documentation for the WM_SIZE message states that:

 wParam is a flag that indicates whether the window was

minimized, maximized, or resized.

 lParam contains the new width and height of the window as 16-bit

values packed into one 32- or 64-bit number. You will need to

perform some bit-shifting to get these values. Fortunately, the

header file WinDef.h includes helper macros that do this.

A typical window procedure handles dozens of messages, so it can grow

quite long. One way to make your code more modular is to put the logic

for handling each message in a separate function. In the window

procedure, cast the wParam and lParam parameters to the correct data

type, and pass those values to the function. For example, to handle

the WM_SIZE message, the window procedure would look like this:

LRESULT CALLBACK WindowProc(HWND hwnd, UINT uMsg,

WPARAM wParam, LPARAM lParam)

https://msdn.microsoft.com/en-us/library/windows/desktop/ms632646(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms632646(v=vs.85).aspx

{

 switch (uMsg)

 {

 case WM_SIZE:

 {

 int width = LOWORD(lParam); // Macro to get the low-order

word.

 int height = HIWORD(lParam); // Macro to get the high-order

word.

 // Respond to the message:

 OnSize(hwnd, (UINT)wParam, width, height);

 }

 break;

 }

}

void OnSize(HWND hwnd, UINT flag, int width, int height);

{

 // Handle resizing

}

The LOWORD and HIWORD macros get the 16-bit width and height

values from lParam. (You can look up these kinds of details in the

MSDN documentation for each message code.) The window procedure

extracts the width and height, and then passes these values to the OnSize

function.

Default Message Handling

If you don't handle a particular message in your window procedure, pass

the message parameters directly to the DefWindowProc function. This

https://msdn.microsoft.com/en-us/library/windows/desktop/ms632659(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms632657(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms633572(v=vs.85).aspx

function performs the default action for the message, which varies by

message type.

 return DefWindowProc(hwnd, uMsg, wParam, lParam);

Avoiding Bottlenecks in Your Window Procedure

While your window procedure executes, it blocks any other messages for

windows created on the same thread. Therefore, avoid lengthy processing

inside your window procedure. For example, suppose your program

opens a TCP connection and waits indefinitely for the server to respond.

If you do that inside the window procedure, your UI will not respond

until the request completes. During that time, the window cannot process

mouse or keyboard input, repaint itself, or even close.

Instead, you should move the work to another thread, using one of the

multitasking facilities that are built into Windows:

 Create a new thread.

 Use a thread pool.

 Use asynchronous I/O calls.

 Use asynchronous procedure calls.

Next

Painting the Window

Send comments about this topic to Microsoft

Build date: 10/5/2010

Community Additions

ADD

office

nothing

https://msdn.microsoft.com/en-us/library/windows/desktop/ff381401(v=vs.85).aspx
mailto:wsddocfb@microsoft.com?subject=Documentation%20feedback%20[LearnWin32/learnwin32%5d:%20Writing%20the%20Window%20Procedure%20%20RELEASE:%20(10/5/2010)&body=%0A%0APRIVACY%20STATEMENT%0A%0AThe%20SDK%20team%20uses%20the%20feedback%20submitted%20to%20improve%20the%20SDK%20documentation.%20We%20do%20not%20use%20your%20email%20address%20for%20any%20other%20purpose.%20We%20will%20remove%20your%20email%20address%20from%20our%20system%20after%20the%20issue%20you%20are%20reporting%20has%20been%20resolved.%20While%20we%20are%20working%20to%20resolve%20this%20issue,%20we%20may%20send%20you%20an%20email%20message%20to%20request%20more%20information%20about%20your%20feedback.%20After%20the%20issues%20have%20been%20addressed,%20we%20may%20send%20you%20an%20email%20message%20to%20let%20you%20know%20that%20your%20feedback%20has%20been%20addressed.%0A%0AFor%20more%20information%20about%20Microsoft%27s%20privacy%20policy,%20see%20http://privacy.microsoft.com/en-us/default.aspx.
https://msdn.microsoft.com/en-us/library/windows/desktop/community/add/ff381408(v=vs.85).aspx

cyber_z

10/11/2015

(snicker)

Look carefully.... The parameter has two parts... LOW and HIGH words

which are split for use as width/height. ;)

DezertRat

4/12/2013

error, I think in "writing a windows procedure"

LRESULT CALLBACK WindowProc(HWND hwnd, UINT uMsg,

WPARAM wParam, LPARAM lParam)

{

 switch (uMsg)

 {

 case WM_SIZE:

 {

 int width = LOWORD(lParam); // Macro to get the low-order

word.

 int height = HIWORD(lParam); // Macro to get the high-order

word.

 // Respond to the message:

 OnSize(hwnd, (UINT)wParam, width, height);

 }

 break;

 }

}

Painting the Window

https://social.msdn.microsoft.com/profile/cyber_z/
https://social.msdn.microsoft.com/profile/dezertrat/
https://social.msdn.microsoft.com/profile/cyber_z/
https://social.msdn.microsoft.com/profile/dezertrat/

You've created your window. Now you want to show something inside it.

In Windows terminology, this is called painting the window. To mix

metaphors, a window is a blank canvas, waiting for you to fill it.

Sometimes your program will initiate painting to update the appearance

of the window. At other times, the operating system will notify you that

you must repaint a portion of the window. When this occurs, the

operating system sends the window a WM_PAINT message. The portion

of the window that must be painted is called the update region.

The first time a window is shown, the entire client area of the window

must be painted. Therefore, you will always receive at least

oneWM_PAINT message when you show a window.

Illustration showing the update region of a window

You are only responsible for painting the client area. The surrounding

frame, including the title bar, is automatically painted by the operating

system. After you finish painting the client area, you clear the update

region, which tells the operating system that it does not need to send

another WM_PAINT message until something changes.

Now suppose the user moves another window so that it obscures a portion

of your window. When the obscured portion becomes visible again, that

portion is added to the update region, and your window receives

another WM_PAINT message.

https://msdn.microsoft.com/en-us/library/windows/desktop/dd145213(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd145213(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd145213(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd145213(v=vs.85).aspx

Illustration showing how the update region changes when two

windows overlap

The update region also changes if the user stretches the window. In the

following diagram, the user stretches the window to the right. The newly

exposed area on the right side of the window is added to the update

region:

Illustration showing how the update region changes when a window

is resized

In our first example program, the painting routine is very simple. It just

fills the entire client area with a solid color. Still, this example is enough

to demonstrate some of the important concepts.

 switch (uMsg)

 {

 case WM_PAINT:

 {

 PAINTSTRUCT ps;

 HDC hdc = BeginPaint(hwnd, &ps);

 // All painting occurs here, between BeginPaint and EndPaint.

 FillRect(hdc, &ps.rcPaint, (HBRUSH) (COLOR_WINDOW+1));

 EndPaint(hwnd, &ps);

 }

 return 0;

 }

Start the painting operation by calling the BeginPaint function. This

function fills in the PAINTSTRUCT structure with information on the

repaint request. The current update region is given in the rcPaint member

of PAINTSTRUCT. This update region is defined relative to the client

area:

https://msdn.microsoft.com/en-us/library/windows/desktop/dd183362(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd162768(v=vs.85).aspx

Illustration showing the origin of the client area

In your painting code, you have two basic options:

 Paint the entire client area, regardless of the size of the update

region. Anything that falls outside of the update region is clipped.

That is, the operating system ignores it.

 Optimize by painting just the portion of the window inside the

update region.

If you always paint the entire client area, the code will be simpler. If you

have complicated painting logic, however, it can be more efficient to skip

the areas outside of the update region.

The following line of code fills the update region with a single color,

using the system-defined window background color

(COLOR_WINDOW). The actual color indicated by COLOR_WINDOW

depends on the user's current color scheme.

 FillRect(hdc, &ps.rcPaint, (HBRUSH) (COLOR_WINDOW+1));

The details of FillRect are not important for this example, but the second

parameter gives the coordinates of the rectangle to fill. In this case, we

pass in the entire update region (the rcPaint member

of PAINTSTRUCT). On the first WM_PAINT message, the entire

client area needs to be painted, so rcPaint will contain the entire client

area. On subsequent WM_PAINT messages, rcPaint might contain a

smaller rectangle.

https://msdn.microsoft.com/en-us/library/windows/desktop/dd162719(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd162768(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd145213(v=vs.85).aspx

The FillRect function is part of the Graphics Device Interface (GDI),

which has powered Windows graphics for a very long time. In

Windows 7, Microsoft introduced a new graphics engine, named

Direct2D, which supports high-performance graphics operations, such as

hardware acceleration. Direct2D is also available for Windows Vista

through the Platform Update for Windows Vista and for Windows

Server 2008 through the Platform Update for Windows Server 2008.

(GDI is still fully supported.)

After you are done painting, call the EndPaint function. This function

clears the update region, which signals to Windows that the window has

completed painting itself.

Closing the Window

When the user closes a window, that action triggers a sequence of

window messages.

The user can close an application window by clicking the Close button,

or by using a keyboard shortcut such as ALT+F4. Any of these actions

causes the window to receive a WM_CLOSE message.

The WM_CLOSE message gives you an opportunity to prompt the user

before closing the window. If you really do want to close the window,

call the DestroyWindow function. Otherwise, simply return zero from

the WM_CLOSEmessage, and the operating system will ignore the

message and not destroy the window.

Here is an example of how a program might handle WM_CLOSE.

case WM_CLOSE:

 if (MessageBox(hwnd, L"Really quit?", L"My application",

MB_OKCANCEL) == IDOK)

 {

 DestroyWindow(hwnd);

 }

 // Else: User canceled. Do nothing.

 return 0;

https://msdn.microsoft.com/en-us/library/windows/desktop/dd162719(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ee663866(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd162598(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms632617(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms632682(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms632617(v=vs.85).aspx

In this example, the MessageBox function shows a modal dialog that

contains OK and Cancel buttons. If the user clicks OK, the program

calls DestroyWindow. Otherwise, if the user clicks Cancel, the call

to DestroyWindow is skipped, and the window remains open. In either

case, return zero to indicate that you handled the message.

If you want to close the window without prompting the user, you could

simply call DestroyWindow without the call to MessageBox. However,

there is a shortcut in this case. Recall that DefWindowProc executes the

default action for any window message. In the case

ofWM_CLOSE, DefWindowProc automatically calls DestroyWindow.

That means if you ignore the WM_CLOSE message in

your switchstatement, the window is destroyed by default.

When a window is about to be destroyed, it receives

a WM_DESTROY message. This message is sent after the window is

removed from the screen, but before the destruction occurs (in particular,

before any child windows are destroyed).

In your main application window, you will typically respond

to WM_DESTROY by calling PostQuitMessage.

 case WM_DESTROY:

 PostQuitMessage(0);

 return 0;

We saw in the Window Messages section that PostQuitMessage puts

a WM_QUIT message on the message queue, causing the message loop

to end.

Here is a flow chart showing the typical way to

process WM_CLOSE and WM_DESTROY messages:

https://msdn.microsoft.com/en-us/library/windows/desktop/ms645505(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms632682(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms632682(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms645505(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms633572(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms632617(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms632620(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms632620(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644945(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff381405(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms644945(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms632641(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms632617(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms632620(v=vs.85).aspx

Flow chart showing how to handle WM_CLOSE and

WM_DESTROY messages

The Windows Function Calls

HELLOWIN makes calls to no fewer than 18 Windows functions. In the

order they occur, these

functions (with a brief description) are:

· LoadIcon Loads an icon for use by a program.

· LoadCursor Loads a mouse cursor for use by a program.

GetStockObject Obtains a graphic object, in this case a brush used for

painting the window's

background.

·

· RegisterClass Registers a window class for the program's window.

· MessageBox Displays a message box.

· CreateWindow Creates a window based on a window class.

· ShowWindow Shows the window on the screen.

· UpdateWindow Directs the window to paint itself.

· GetMessage Obtains a message from the message queue.

· TranslateMessage Translates some keyboard messages.

· DispatchMessage Sends a message to a window procedure.

· PlaySound Plays a sound file.

· BeginPaint Initiates the beginning of window painting.

· GetClientRect Obtains the dimensions of the window's client area.

· DrawText Displays a text string.

· EndPaint Ends window painting.

· PostQuitMessage Inserts a "quit" message into the message queue.

· DefWindowProc Performs default processing of messages.

These functions are described in the Platform SDK documentation, and

they are declared in various

header files, mostly in WINUSER.H.

Application Creation

The Main Window Class

There are two primary things you must do in order to create even the simplest window:

you must create the central point of the program, and you must tell the operating system

how to respond when the user does what.

Just like a C++ program always has a main() function, a Win32 program needs a central

function call WinMain. The syntax of that function is:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow);

Unlike the C++ main() function, the arguments of the WinMain() function are not

optional. Your program will need them to communicate with the operating system.

The first argument, hInstance, is a handle to the instance of the program you are writing.

The second argument, hPrevInstance, is used if your program had any previous

instance. If not, this argument can be ignored, which will always be the case.

The third argument, lpCmdLine, is a string that represents all items used on the

command line to compile the application.

The last argument, nCmdShow, controls how the window you are building will be

displayed.

An object that displays on your screen is called a window. Because there can be various

types of windows in your programs, your first responsibility is to control them, know

where they are, what they are doing, why, and when. The first control you must exercise

on these different windows is to host them so that all windows of your program belong

to an entity called the main window. This main window is created using an object that

can be called a class (strictly, a structure).

The Win32 library provides two classes for creating the main window and you can use

any one of them. They are WNDCLASS and WNDCLASSEX. The second adds only a

slight feature to the first. Therefore, we will mostly use the WNDCLASSEX structure

for our lessons.

The WNDCLASS and the WNDCLASSEX classes are defined as follows:

 typedef struct _WNDCLASS {

 UINT style;

 WNDPROC lpfnWndProc;

 int cbClsExtra;

 int cbWndExtra;

typedef struct _WNDCLASSEX {

 UINT cbSize;

 UINT style;

 WNDPROC lpfnWndProc;

 int cbClsExtra;

 HINSTANCE hInstance;

 HICON hIcon;

 HCURSOR hCursor;

 HBRUSH hbrBackground;

 LPCTSTR lpszMenuName;

 LPCTSTR lpszClassName;

} WNDCLASS, *PW

 int cbWndExtra;

 HINSTANCE hInstance;

 HICON hIcon;

 HCURSOR hCursor;

 HBRUSH hbrBackground;

 LPCTSTR lpszMenuName;

 LPCTSTR lpszClassName;

 HICON hIconSm;

} WNDCLASSEX,

*PWNDCLASSEX;

To create a window, you must "fill out" this class, which means you must provide a

value for each of its members so the operating system would know what your program

is expected to do.

The first thing you must do in order to create an application is to declare a variable of

eitherWNDCLASS or WNDCLASSEX type. Here is an example of

a WNDCLASSEX variable:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 WNDCLASSEX WndClsEx;

 return 0;

}

The Size of the Window Class

After declaring a WNDCLASSEX variable, you must specify its size. This is done

by initializing your variable with the sizeof operator applied to the window class as

follows:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 WNDCLASSEX WndClsEx;

 WndClsEx.cbSize = sizeof(WNDCLASSEX);

 return 0;

}

Additional Memory Request

Upon declaring a WNDCLASSEX variable, the compiler allocates an amount of

memory space for it, as it does for all other variables. If you think you will need more

memory than allocated, assign the number of extra bytes to the cbClsExtra member

variable. Otherwise, the compiler initializes this variable to 0. If you do not need extra

memory for your WNDCLASSEX variable, initialize this member with 0. Otherwise,

you can do it as follows:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 WNDCLASSEX WndClsEx;

 WndClsEx.cbSize = sizeof(WNDCLASSEX);

 WndClsEx.cbClsExtra = 0;

 return 0;

}

The Application's Instance

Creating an application is equivalent to creating an instance for it. To communicate to

theWinMain() function that you want to create an instance for your application, which

is, to make it available as a resource, assign the WinMain()'s hInstance argument to

your WNDCLASSvariable:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 WNDCLASSEX WndClsEx;

 WndClsEx.cbSize = sizeof(WNDCLASSEX);

 WndClsEx.cbClsExtra = 0;

 WndClsEx.hInstance = hInstance;

 return 0;

}

Window Extra-Memory

When an application has been launched and is displaying on the screen, which means an

instance of the application has been created, the operating system allocates an amount of

memory space for that application to use. If you think that your application's instance

will need more memory than that, you can request that extra memory bytes be allocated

to it. Otherwise, you can let the operating system handle this instance memory issue and

initialize the cbWndExtra member variable to 0:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 WNDCLASSEX WndClsEx;

 WndClsEx.cbSize = sizeof(WNDCLASSEX);

 WndClsEx.cbClsExtra = 0;

 WndClsEx.cbWndExtra = 0;

 WndClsEx.hInstance = hInstance;

 return 0;

}

The Main Window's Style

The style member variable specifies the primary operations applied on the window class.

The actual available styles are constant values. For example, if a user moves a window

or changes its size, you would need the window to be redrawn to get its previous

characteristics. To redraw the window horizontally, you would apply

the CS_HREDRAW. In the same way, to redraw the window vertically, you can apply

the CS_VREDRAW.

The styles are combined using the bitwise OR (|) operator. The CS_HREDRAW and

theCS_VREDRAW styles can be combined and assigned to the style member variable

as follows:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 WNDCLASSEX WndClsEx;

 WndClsEx.cbSize = sizeof(WNDCLASSEX);

 WndClsEx.style = CS_HREDRAW | CS_VREDRAW;

 WndClsEx.cbClsExtra = 0;

 WndClsEx.cbWndExtra = 0;

 WndClsEx.hInstance = hInstance;

 return 0;

}

Message Processing

The name of the window procedure we reviewed in the previous lesson must be

assigned to the lpfnWndProc member variable of

the WNDCLASS or WNDCLASSEX variable. This can be defined as follows:

#include <windows.h>

http://www.functionx.com/win32/Lesson01.htm#WndProc

LRESULT WndProcedure(HWND hWnd, UINT uMsg, WPARAM wParam,

LPARAM lParam);

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 WNDCLASSEX WndClsEx;

 WndClsEx.cbSize = sizeof(WNDCLASSEX);

 WndClsEx.style = CS_HREDRAW | CS_VREDRAW;

 WndClsEx.lpfnWndProc = WndProcedure;

 WndClsEx.cbClsExtra = 0;

 WndClsEx.cbWndExtra = 0;

 WndClsEx.hInstance = hInstance;

 return 0;

}

LRESULT CALLBACK WndProcedure(HWND hWnd, UINT Msg, WPARAM

wParam, LPARAM lParam)

{

 switch(Msg)

 {

 case WM_DESTROY:

 PostQuitMessage(WM_QUIT);

 break;

 default:

 return DefWindowProc(hWnd, Msg, wParam, lParam);

 }

 return 0;

}

The Application Main Icon

An icon can be used to represent an application in My Computer or Windows Explorer.

To assign this small picture to your application, you can either use an existing icon or

design your own. To make your programming a little faster, Microsoft Windows

installs a few icons. The icon is assigned to the hIcon member variable using

the LoadIcon() function. For a Win32 application, the syntax of this function is:

HICON LoadIcon(HINSTANCE hInstance, LPCTSTR lpIconName);

The hInstance argument is a handle to the file in which the icon was created. This file

is usually stored in a library (DLL) of an executable program. If the icon was created

as part of your application, you can use the hInstance of your application. If your are

using one of the icons below, set this argument to NULL.

The lpIconName is the name of the icon to be loaded. This name is added to the

resource file when you create the icon resource. It is added automatically if you add the

icon as part of your resources; otherwise you can add it manually when creating your

resource script. Normally, if you had created and designed an icon and gave it an

identifier, you can pass it using the MAKEINTRESOURCE macro.

To make your programming a little faster, Microsoft Windows installs a few icons you

can use for your application. These icons have identification names that you can pass

to theLoadIcon() function as the lpIconName argument. The icons are:

ID Picture

IDI_APPLICATION

IDI_INFORMATION

IDI_ASTERISK

IDI_QUESTION

IDI_WARNING

IDI_EXCLAMATION

IDI_HAND

IDI_ERROR

If you designed your own icon (you should make sure you design a 32x32 and a 16x16

versions, even for convenience), to use it, specify the hInstance argument of

the LoadIcon()function to the instance of your application. Then use

the MAKEINTRESOURCE macro to convert its identifier to a null-terminated string.

This can be done as follows:

WndCls.hIcon = LoadIcon(hInstance, MAKEINTRESOURCE(IDI_STAPLE));

The icon can be specified by its name, which would be a null-terminated string passed

aslpszResourceName. If you had designed your icon and gave it an ID, you can pass

this identifier to the LoadIcon() method.

The LoadIcon() member function returns an HICON object that you can assign to

the hIconmember variable of your WNDCLASS object. Besides the regular (32x32)

icon, the WNDCLASSEX structure allows you to specify a small icon (16x16) to use

in some circumstances. You can specify both icons as follows:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 WNDCLASSEX WndClsEx;

 WndClsEx.cbSize = sizeof(WNDCLASSEX);

 WndClsEx.style = CS_HREDRAW | CS_VREDRAW;

 WndClsEx.lpfnWndProc = WndProcedure;

 WndClsEx.cbClsExtra = 0;

 WndClsEx.cbWndExtra = 0;

 WndClsEx.hIcon = LoadIcon(NULL, IDI_APPLICATION);

 WndClsEx.hInstance = hInstance;

 WndClsEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

 return 0;

}

Introduction to Cursors

A cursor is used to locate the position of the mouse pointer on a document or the

screen. To use a cursor, call the Win32 LoadCursor() function. Its syntax is:

HCURSOR LoadCursor(HINSTANCE hInstance, LPCTSTR lpCursorName);

The hInstance argument is a handle to the file in which the cursor was created. This

file is usually stored in a library (DLL) of an executable program. If the cursor was

created as part of your application, you can use the hInstance of your application. If

your are using one of the below cursors, set this argument to NULL.

When Microsoft Windows installs, it also installs various standard cursors you can use

in your program. Each one of these cursors is recognized by an ID which is simply a

constant integers. The available cursors are:

ID Picture Description

IDC_APPSTARTING

Used to show that something undetermined is going

on or the application is not stable

IDC_ARROW

This standard arrow is the most commonly used

cursor

IDC_CROSS

The crosshair cursor is used in various

circumstances such as drawing

IDC_HAND

The Hand is standard only in Windows 2000. If you

are using a previous operating system and need this

cursor, you may have to create your own.

IDC_HELP

The combined arrow and question mark cursor is

used when providing help on a specific item on a

window object

IDC_IBEAM

The I-beam cursor is used on text-based object to

show the position of the caret

IDC_ICON This cursor is not used anymore

IDC_NO

This cursor can be used to indicate an unstable

situation

IDC_SIZE This cursor is not used anymore

IDC_SIZEALL

The four arrow cursor pointing north, south, east,

and west is highly used to indicate that an object is

selected or that it is ready to be moved

IDC_SIZENESW

The northeast and southwest arrow cursor can be

used when resizing an object on both the length and

the height

IDC_SIZENS

The north - south arrow pointing cursor can be

used when shrinking or heightening an object

IDC_SIZENWSE

The northwest - southeast arrow pointing cursor can

be used when resizing an object on both the length

and the height

IDC_SIZEWE

The west - east arrow pointing cursor can be used

when narrowing or enlarging an object

IDC_UPARROW

The vertical arrow cursor can be used to indicate

the presence of the mouse or the caret

IDC_WAIT

The Hourglass cursor is usually used to indicate

that a window or the application is not ready.

The LoadCursor() member function returns an HCURSOR value. You can assign it

to thehCursor member variable of your WNDCLASS object. Here is an example:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 WNDCLASSEX WndClsEx;

 WndClsEx.cbSize = sizeof(WNDCLASSEX);

 WndClsEx.style = CS_HREDRAW | CS_VREDRAW;

 WndClsEx.lpfnWndProc = WndProcedure;

 WndClsEx.cbClsExtra = 0;

 WndClsEx.cbWndExtra = 0;

 WndClsEx.hIcon = LoadIcon(NULL, IDI_APPLICATION);

 WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);

 WndClsEx.hInstance = hInstance;

 WndClsEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

 return 0;

}

The Window's Background Color

To paint the work area of the window, you must specify what color will be used to fill it. This color is created as an HBRUSH and assigned to the hbrBackground member variable of yourWNDCLASS or WNDCLASSEX variable. The color you are using must be a

valid HBRUSH or you can cast a known color to HBRUSH. The Win32 library defines a series of colors known as stock objects. To use one of these colors, call the GetStockObject() function. For example, to paint the windows background in black, you can pass

the BLACK_BRUSH constant to theGetStockObject() function, cast it to HBRUSH and assign the result to hbrBackground.

In addition to the stock objects, the Microsoft Windows provides a series of colors for its own internal use. These are the colors used to paint the borders of frames, buttons, scroll bars, title bars, text, etc. The colors are named (you should be able to predict their appearance or role

from their

name) COLOR_ACTIVEBORDER, COLOR_ACTIVECAPTION,COLOR_APPWORKSPACE, COLOR_BACKGROUND, COLOR_BTNFACE,COLOR_BTNSHADOW, COLOR_BTNTEXT, COLOR_CAPTIONTEXT, COLOR_GRAYTEXT,COLOR_HIGH

LIGHT, COLOR_HIGHLIGHTTEXT, COLOR_INACTIVEBORDER,COLOR_INACTIVECAPTION, COLOR_MENU, COLOR_MENUTEXT, COLOR_SCROLLBAR,COLOR_WINDOW, COLOR_WINDOWFRAME, and COLOR_WINDOWTEXT. You

can use any of these colors to paint the background of your window. First cast it to HBRUSH and assign it to hbrBackground:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 WNDCLASSEX WndClsEx;

 WndClsEx.cbSize = sizeof(WNDCLASSEX);

 WndClsEx.style = CS_HREDRAW | CS_VREDRAW;

 WndClsEx.lpfnWndProc = WndProcedure;

 WndClsEx.cbClsExtra = 0;

 WndClsEx.cbWndExtra = 0;

 WndClsEx.hIcon = LoadIcon(NULL, IDI_APPLICATION);

 WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);

 WndClsEx.hbrBackground = GetStockObject(WHITE_BRUSH);

 WndClsEx.hInstance = hInstance;

 WndClsEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

 return 0;

}

The Application's Main Menu

If you want the window to display a menu, first create or design the resource menu (we

will eventually learn how to do this). After creating the menu, assign its name to

thelpszMenuName name to your WNDCLASS or WNDCLASSEX variable.

Otherwise, pass this argument as NULL. Here is an example:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 WNDCLASSEX WndClsEx;

 WndClsEx.cbSize = sizeof(WNDCLASSEX);

 WndClsEx.style = CS_HREDRAW | CS_VREDRAW;

 WndClsEx.lpfnWndProc = WndProcedure;

 WndClsEx.cbClsExtra = 0;

 WndClsEx.cbWndExtra = 0;

 WndClsEx.hIcon = LoadIcon(NULL, IDI_APPLICATION);

 WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);

 WndClsEx.hbrBackground = GetStockObject(WHITE_BRUSH);

 WndClsEx.lpszMenuName = NULL;

 WndClsEx.hInstance = hInstance;

 WndClsEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

 return 0;

}

The Window's Class Name

To create a window, you must provide its name as everything else in the computer has

a name. The class name of your main window must be provided to

the lpszClassName member variable of

your WNDCLASS or WNDCLASSEX variable. You can provide the name to the

variable or declare a global null-terminated string. Here is an example:

LPCTSTR ClsName = L"BasicApp";

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 WNDCLASSEX WndClsEx;

 WndClsEx.cbSize = sizeof(WNDCLASSEX);

 WndClsEx.style = CS_HREDRAW | CS_VREDRAW;

 WndClsEx.lpfnWndProc = WndProcedure;

 WndClsEx.cbClsExtra = 0;

 WndClsEx.cbWndExtra = 0;

 WndClsEx.hIcon = LoadIcon(NULL, IDI_APPLICATION);

 WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);

 WndClsEx.hbrBackground = GetStockObject(WHITE_BRUSH);

 WndClsEx.lpszMenuName = NULL;

 WndClsEx.lpszClassName = ClsName;

 WndClsEx.hInstance = hInstance;

 WndClsEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

 return 0;

}

Finalizing an Application

Window Registration

After initializing the window class, you must make it available to the other controls that

will be part of your application. This process is referred to as registration. To register the

window class, call the RegisterClass() for a WNDCLASS variable. If you created your

window class using the WNDCLASSEX structure, call

the RegisterClassEx() function. Their syntaxes are:

ATOM RegisterClass(CONST WNDCLASS *lpWndClass);

ATOM RegisterClassEx(CONST WNDCLASSEX *lpwcx);

The function simply takes as argument a pointer to

a WNDCLASS or WNDCLASSEX. This call can be done as follows:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 WNDCLASSEX WndClsEx;

 . . .

 RegisterClassEx(&WndClsEx);

 return 0;

}

Window Creation

The WNDLCLASS and the WNDCLASSEX classes are used to initialize the

application window class. To display a window, that is, to give the user an object to

work with, you must create a window object. This window is the object the user uses to

interact with the computer.

To create a window, you can call either the CreateWindow() or

the CreateWindowEx()function. We will come back to these functions.

You can simply call this function and specify its arguments after you have registered the

window class. Here is an example:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 WNDCLASSEX WndCls;

 . . .

 RegisterClassEx(&WndClsEx);

 CreateWindow(. . .);

}

If you are planning to use the window further in your application, you should retrieve

the result of the CreateWindow() or the CreateWindowEx() function, which is a

handle to the window that is being created. To do this, you can declare

an HWND variable and initialize it with the create function. This can be done as

follows:

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 HWND hWnd;

 WNDCLASSEX WndClsEx;

 . . .

 RegisterClassEx(&WndClsEx);

 hWnd = CreateWindow(. . .);

}

We will come back to the other characteristics of a window in future lessons.

Window's Message Decoding

Once a window has been created, the user can use it. This is done by the user clicking

things with the mouse or pressing keys on the keyboard. A message that a window sends

is received by the application. This application must analyze, translate, and decode the

message to know what object sent the message and what the message consists of. To do

this, the application uses the GetMessage() function. Its syntax is:

BOOL GetMessage(LPMSG lpMsg, HWND hWnd, UINT wMsgFilterMin, UINT

wMsgFilterMax);

The lpMsg argument is a pointer to the MSG structure. The MSG structure is defined as

follows:

typedef struct tagMSG {

 HWND hwnd;

 UINT message;

 WPARAM wParam;

 LPARAM lParam;

 DWORD time;

 POINT pt;

} MSG, *PMSG;

The hWnd argument identifies which window sent the message. If you want the

messages of all windows to be processed, pass this argument as NULL.

The wMsgFilterMin and the wMsgFilterMax arguments specify the message values that

will be treated. If you want all messages to be considered, pass each of them as 0.

Once a message has been sent, the application analyzes it using

the TranslateMessage()function. Its syntax is:

BOOL TranslateMessage(CONST MSG *lpMsg);

This function takes as argument the MSG object that was passed to

the GetMessage()function and analyzes it. If this function successfully translates the

message, it returns TRUE. If it cannot identify and translate the message, it returns

FALSE.

Once a message has been decoded, the application must send it to the window

procedure. This is done using the DispatchMessage() function. Its syntax is:

LRESULT DispatchMessage(CONST MSG *lpMsg);

This function also takes as argument the MSG object that was passed

to GetMessage() and analyzed by TranslateMessage().

This DispatchMessage() function sends the lpMsgmessage to the window procedure.

The window procedure processes it and sends back the result, which becomes the return

value of this function. Normally, when the window procedure receives the message, it

establishes a relationship with the control that sent the message and starts treating it. By

the time the window procedure finishes with the message, the issue is resolved (or

aborted). This means that, by the time the window procedure returns its result, the

message is not an issue anymore. For this reason you will usually, if ever, not need to

retrieve the result of the DispatchMessage() function.

This translating and dispatching of messages is an on-going process that goes on as long

as your application is running and as long as somebody is using it. For this reason, the

application uses a while loop to continuously check new messages. This behavior can be

implemented as follows:

while(GetMessage(&Msg, NULL, 0, 0))

{

 TranslateMessage(&Msg);

 DispatchMessage(&Msg);

}

If the WinMain() function successfully creates the application and the window, it

returns thewParam value of the MSG used on the application.

 Practical Learning: Creating a Sample Application

1. Replace the file with the following (the file in Borland C++ Builder contains

some lines with #pragma; you don't need to delete these files because their

presence or absence will not have a negative impact on the compilation of the

program):

#include <windows.h>

LPCTSTR ClsName = L"BasicApp";

LPCTSTR WndName = L"A Simple Window";

LRESULT CALLBACK WndProcedure(HWND hWnd, UINT uMsg,

 WPARAM wParam, LPARAM lParam);

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 MSG Msg;

 HWND hWnd;

 WNDCLASSEX WndClsEx;

 // Create the application window

 WndClsEx.cbSize = sizeof(WNDCLASSEX);

 WndClsEx.style = CS_HREDRAW | CS_VREDRAW;

 WndClsEx.lpfnWndProc = WndProcedure;

 WndClsEx.cbClsExtra = 0;

 WndClsEx.cbWndExtra = 0;

 WndClsEx.hIcon = LoadIcon(NULL, IDI_APPLICATION);

 WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);

 WndClsEx.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);

 WndClsEx.lpszMenuName = NULL;

 WndClsEx.lpszClassName = ClsName;

 WndClsEx.hInstance = hInstance;

 WndClsEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

 // Register the application

 RegisterClassEx(&WndClsEx);

 // Create the window object

 hWnd = CreateWindow(ClsName,

 WndName,

 WS_OVERLAPPEDWINDOW,

 CW_USEDEFAULT,

 CW_USEDEFAULT,

 CW_USEDEFAULT,

 CW_USEDEFAULT,

 NULL,

 NULL,

 hInstance,

 NULL);

 // Find out if the window was created

 if(!hWnd) // If the window was not created,

 return 0; // stop the application

 // Display the window to the user

 ShowWindow(hWnd, SW_SHOWNORMAL);

 UpdateWindow(hWnd);

 // Decode and treat the messages

 // as long as the application is running

 while(GetMessage(&Msg, NULL, 0, 0))

 {

 TranslateMessage(&Msg);

 DispatchMessage(&Msg);

 }

 return Msg.wParam;

}

LRESULT CALLBACK WndProcedure(HWND hWnd, UINT Msg,

 WPARAM wParam, LPARAM lParam)

{

 switch(Msg)

 {

 // If the user wants to close the application

 case WM_DESTROY:

 // then close it

 PostQuitMessage(WM_QUIT);

 break;

 default:

 // Process the left-over messages

 return DefWindowProc(hWnd, Msg, wParam, lParam);

 }

 // If something was not done, let it go

 return 0;

}

2. To execute the program, if you are using Borland C++ Builder, press F9

If you are using Microsoft Visual C++, press Ctrl + F5 and click Yes

3. To close the window, click its system Close button and return to your

programming environment.

Introduction to Resources

Resources Fundamentals

Introduction

A resource is an object that cannot be defined in C++ terms but that is needed to

complete a program. In the strict sense, it is text that contains a series of terms or

words that the program can interpret through code. Examples of resources are menus,

icons, cursors, dialog boxes, sounds, etc.

There are various means of creating a resource and the approach you use depends on

the resource. For example, some resources are completely text-based, such is the case

for the String Table or the Accelerator Table. Some other resources must be designed,

such is the case for icons and cursors. Some other resources can be imported from

another, more elaborate application, such is the case for high graphic pictures. Yet

some resources can be a combination of different resources.

Resource Creation

As mentioned already, resources are not a C++ concept but a Microsoft Windows theory of completing an

application. Therefore, the programming environment you use may or may not provide you with the means of

creating certain resources. Some environments like Borland C++ Builder or Visual C++ (6 and .NET) are

complete with (almost) anything you need to create (almost) any type of resources. Some other environments

may appear incomplete, allowing you to create only some resources, the other resources must be created using

an external application not provided; such is the case for C++BuilderX.

Upon creating a resource, you must save it. Some resources are created as their own file, such is the case for

pictures, icons, cursors, sound, etc. Each of these resources has a particular extension depending on the

resource. After creating the resources, you must add them to a file that has the extension .rc. Some resources are

listed in this file using a certain syntax. That's the case for icons, cursors, pictures, sounds, etc. Some other

resources must be created directly in this file because these resources are text-based; that's the case for menus,

strings, accelerators, version numbers, etc.

After creating the resource file, you must compile it. Again, some environments, such as Microsoft Visual C++,

do this automatically when you execute the application. Some other environments may require you to explicitly

compile the resource. That's the case for Borland C++ Builder and C++BuilderX. (The fact that these

environments require that you compile the resource is not an anomaly. For example, if you create a Windows

application that is form-based in C++ Builder 6 or Delphi, you can easily add the resources and they are

automatically compiled and added to the application. If you decide to create a Win32 application, C++ Builder

believes that you want to completely control your application; so, it lets you decide when and how to compile a

resource. This means that it simply gives you more control).

 Practical Learning: Introducing Windows Resources

1. If you are using Borland C++ Builder, create a new Win32 application using Console Wizard as we did in

Lesson 1

a. Save the project as Resources1 in a new folder called Resources1

b. Save the unit as Exercise.cpp

2. If you are using Microsoft Visual C++,

a. Create a new Win32 Application as done the previous time. Save the project asResources1 and

b. Create a new C++ Source file named Exercise.cpp

3. Implement the source file as follows(for Borland C++ Builder, only add the parts that are not in the

code):

//---

#include <windows.h>

#pragma hdrstop

//---

#pragma argsused

//---

LPCTSTR ClsName = L"FundApp";

LPCTSTR WndName = L"Resources Fundamentals";

LRESULT CALLBACK WndProcedure(HWND hWnd, UINT uMsg,

 WPARAM wParam, LPARAM lParam);

//---

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 MSG Msg;

 HWND hWnd;

 WNDCLASSEX WndClsEx;

 // Create the application window

 WndClsEx.cbSize = sizeof(WNDCLASSEX);

 WndClsEx.style = CS_HREDRAW | CS_VREDRAW;

 WndClsEx.lpfnWndProc = WndProcedure;

 WndClsEx.cbClsExtra = 0;

 WndClsEx.cbWndExtra = 0;

 WndClsEx.hIcon = LoadIcon(NULL, IDI_APPLICATION);

 WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);

 WndClsEx.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);

 WndClsEx.lpszMenuName = NULL;

 WndClsEx.lpszClassName = ClsName;

 WndClsEx.hInstance = hInstance;

 WndClsEx.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

 // Register the application

 RegisterClassEx(&WndClsEx);

 // Create the window object

 hWnd = CreateWindowEx(0,

 ClsName,

 WndName,

 WS_OVERLAPPEDWINDOW,

 CW_USEDEFAULT,

 CW_USEDEFAULT,

 CW_USEDEFAULT,

 CW_USEDEFAULT,

 NULL,

 NULL,

 hInstance,

 NULL);

 // Find out if the window was created

 if(!hWnd) // If the window was not created,

 return FALSE; // stop the application

 // Display the window to the user

 ShowWindow(hWnd, nCmdShow);// SW_SHOWNORMAL);

 UpdateWindow(hWnd);

 // Decode and treat the messages

 // as long as the application is running

 while(GetMessage(&Msg, NULL, 0, 0))

 {

 TranslateMessage(&Msg);

 DispatchMessage(&Msg);

 }

 return Msg.wParam;

}

//---

LRESULT CALLBACK WndProcedure(HWND hWnd, UINT Msg,

 WPARAM wParam, LPARAM lParam)

{

 switch(Msg)

 {

 case WM_DESTROY:

 PostQuitMessage(WM_QUIT);

 break;

 default:

 // Process the left-over messages

 return DefWindowProc(hWnd, Msg, wParam, lParam);

 }

 // If something was not done, let it go

 return 0;

}

//---

4. Execute the application to test it

Introduction to Resources: Cursors

Introduction

A cursor is an object used to show or represent the current position of the mouse on the screen. Microsoft

Windows ships with many cursors as follows:

IDC_APPSTARTING

IDC_ARROW

IDC_CROSS

IDC_HAND

IDC_HELP

IDC_IBEAM

IDC_ICON
Not

Used(*)
IDC_NO

IDC_SIZE
Not

Used(*)
IDC_SIZEALL

IDC_SIZENESW

IDC_SIZENS

IDC_SIZENWSE

IDC_SIZEWE

IDC_UPARROW

IDC_WAIT

(*) The IDC_ICON and the IDC_SIZE cursors should not be used anymore.

To use a cursor, the user points the mouse on a specific item. Because a cursor can be large and because many

areas of a window can act upon receiving the mouse, the cursor has a special area called a hot spot so that, no

matter how big the cursor is, the mouse can apply its behavior only on what the hot spot touches. For an arrow

cursor, which is the most widely used cursor, the hot spot is located on the tip of the arrow pointing to the top-

left corner. When you create your own cursor, you can position the hot spot anywhere on the cursor as you wish

but you must always know where the hot spot of your cursor is and you should always make it obvious to the

user.

Cursor Creation

To use any of the above cursors, simply pass its name as the second argument to theLoadCursor() function.

Here is an example:

LoadCursor(NULL, IDC_HELP);

Creating your own cursor or a few cursors for your application involves a few steps. These steps can be

different depending on the programming environment you are using; but the process is the same.

You should first create a cursor. You can copy one of the existing cursors that ship with your programming

environment. Both Borland C++ Builder and Microsoft Visual C++ install many cursors. You can still create

your own cursor from scratch. For Borland C++ Builder, this can be done using the Image Editor, which is a

separate application that ships with the compiler. For Microsoft Visual C++, you can do this using the built-in

image editor. The cursor is its own file with the extension .cur.

After creating and possibly testing the cursor, you must create a header file, usually called Resource.h, in which

you define the cursor. In this file, each cursor must be defined with the formula:

#define Identifier Constant

The #define preprocessor is required. The identifier must be a non-quoted string that will serve to identify the

cursor. The Constant must an integer with a unique value in the file.

After creating the header file, you must create the main resource file. This file has an extension of .rc and it

usually has the same name as the project but this is only a habit. In the resource file, you should first include the

header file you just created. In the file, each resource must be represented. For a cursor, you use the formula:

Identifier CURSOR FileName

The Identifier must be the same you defined in the Resource header file. The keyword CURSOR must be used

to let the compiler know that this particular resource is a cursor, making it distinct from other resources such as

icons or bitmaps, etc. The FileName must be the cursor with extension .cur that you had created already.

To use the resource (.rc) file in your project, you must explicitly Add it to your project. Neither Borland C++

Builder nor Microsoft Visual C++ will add this rc file for you. The main difference is that, with Borland C++

Builder, you can add this rc file before or after compiling it, as long as the compile is aware of it before building

the whole project. With Microsoft Visual C++, you should first (although you don't have to) add the rc file to

your project. In fact, this makes it easy for Microsoft Visual C++ to compile the rc file for you.

Using Borland C++ Builder

1. To create the cursor file, on the main menu, click Tools -> Image Editor

2. When the Image Editor displays, on the main menu, click File -> New ->

Cursor File (.cur). Press Ctrl + I three times to zoom in.

3. Design the cursor as follows:

4. To define the hot spot, on the main menu of Image Editor, click Cursor -> Set

Hot Spot... Set the Horizontal (X) and the Vertical (Y) values to 15 each and

click OK

5. To save the cursor, on the main menu of Image Editor, click File -> Save

6. Locate the folder where the current exercise is located and display in the Save In

combo box

7. Replace the contents of the File Name edit box with Target

The right extension (.cur) will be added to the file

8. Click Save and return to C++ Builder

9. To create the resource header file, on the main menu, click File -> New... or File

-> New -> Other...

10. In the New Items dialog box, click Header File and click OK

11. In the header file, type:

#define IDC_TARGET 1000

12. To save the header file, on the Standard toolbar, click the Save All button

13. Type Resource.h and make sure you add the extension

14. Click Save

15. To create the actual resource file, on the main menu, click File -> New... or File

-> New -> Other...

16. In the New Items dialog box, scroll down, click the Text icon, and click OK.

17. In the empty file, type:

#include "Resource.h"

IDC_TARGET CURSOR "Target.cur"

18. To save the resource file, on the Standard toolbar, click the Save All button.

19. Type "Resources1.rc"

The reason for the double-quotes is to make sure that not only the file is not

saved with a txt extension but also it is actually saved with the rc extension

20. Click Save

21. To add the resource file to the current project, on the main menu, click Project -

> Add to Project...

22. In the Files of Type combo box, select Resource File (*.rc)

23. In the list box, click Resources.rc.rc and click Open

 Using Microsoft Visual C++

1. To create the cursor, on the main menu, click Insert -> Resource... In the Insert

Resource dialog box, click Cursor and click New

2. If you are using MSVC 6, on the main menu, click View -> Properties...

In the Properties window, change the ID to IDC_TARGET and press Tab

Make sure the file name is changed to target.cur and press Enter

3. Design the cursor as follows:

4. To define the hot spot, on the toolbar of the editor, click the Set Hot Spot button.

Click the middle of the square:

5. To save and close the resource file, click its system Close button (the system

Close button of the child window) of the cursor and close the child window of

the script (the window with Script1 or Script2)

6. When asked to save the script, click Yes

7. Locate the folder where the current exercise is located and display in the Save In

combo box. Change the name of the file to Resources1.rc

The right extension (.rc) will be added to the file

8.

9. Click Save

10. To add the resource file to the current project, on the main menu, click Project -

> Add To Project -> Files...

11. In the list box, click Win32B.rc and click OK

12. In the Workspace, click the ResourceView tab.

Expand the Win32B resource node by clicking its + button. Expand the Cursor

node.

Make sure the IDC_TARGET cursor is present

Custom Cursors

After creating the resource file, you must compile it. After the rc file has been

compiled, it creates a file with extension .res. In Borland C++ Builder, you must

explicitly compile the resource file, which is easy but you must remember to do it.

Microsoft Visual C++ transparently compiles the rc file for you but you must have

added it to your project.

After creating the resource file, because the Resource header file holds the identifiers

of the resource, remember to include it in the file where you want to use the resources.

This is done with a simple:

#include "Resource.h"

To use your own cursor, assign the result of the LoadCursor() function to

the hCursormember variable of the WNDCLASS or the WNDCLASSEX class. The

first argument of the function should be the instance of the application you are using.

For the second argument, use the MAKEINTRESOURCE macro, passing it the

identifier of the cursor.

 Practical Learning: Using a Cursor

1. If you are using Borland C++ Builder, click the Resources1.rc tab in the Code

Editor

2. Then, on the main menu, click Project -> Compile Unit. After the resource file

has been compiled, click OK

3. In both compilers, change the Main.cpp file as follows:

//---

#include <windows.h>

#include "resource.h"

//---

HWND hWnd;

LPCTSTR ClsName = L"SimpleWindow";

LPCTSTR WindowCaption = L"A Simple Window";

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg,

WPARAM wParam, LPARAM lParam);

//---

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE

hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 MSG Msg;

 WNDCLASSEX WndClsEx;

 WndClsEx.cbSize = sizeof(WNDCLASSEX);

 WndClsEx.style = CS_HREDRAW | CS_VREDRAW;

 WndClsEx.lpfnWndProc = WndProc;

 WndClsEx.cbClsExtra = NULL;

 WndClsEx.cbWndExtra = NULL;

 WndClsEx.hInstance = hInstance;

 WndClsEx.hIcon = LoadIcon(NULL, IDI_APPLICATION);

 WndClsEx.hCursor = LoadCursor(hInstance,

 MAKEINTRESOURCE(IDC_TARGET));

 WndClsEx.hbrBackground =

(HBRUSH)GetStockObject(WHITE_BRUSH);

 . . . No Change

 return Msg.wParam;

}

//---

LRESULT CALLBACK WndProc(HWND hWnd, UINT Msg,

WPARAM wParam, LPARAM lParam)

{

 . . . No Change

}

//---

4. To execute your program, in Borland C++ Builder, on the main menu, click

Project -> Build Resources1. When it is ready, press F9

In Microsoft Visual C++, press Ctrl + F5 and Enter

5. Close the window and return to your programming environment

List-Based Resources

Menus

Introduction

A menu is a list of commands that allow the user to interact with an application. To use

one of the commands, the user accesses the list and clicks the desired item. There are

two main types of menus. On most applications, a menu is represented in the top

section with a series of words such as File, Edit, Help. Each of these words represents a

category of items. To use this type of menu, the use can display one of the categories

(using the mouse or the keyboard). A list would display and the user can select one of

the items. The second type of menu is called context sensitive. To use this type of

menu, the user typically right-clicks a certain area of the application, a list comes up

and the user can select one of the items from the list.

 Practical Learning: Introducing List-Based Resources

1. Create a new Win32 Project named Resources2 and create it as an empty project

2. On the main menu, click Project -> Add Resource...

3. Double-click Icon and design it as follows (make sure you add the 16x16 version)

32 x 32 16 x 16

4. Change the ID of the icon to IDI_RESFUND2 and its File Name to resfund2.ico

5. Create a source file and name it Exercise

6. From what we have learned so far, type the following code in the file:

//---

#include <windows.h>

#include "resource.h"

//---

LRESULT CALLBACK WndProcedure(HWND hWnd, UINT uMsg,

 WPARAM wParam, LPARAM lParam);

//---

INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

{

 MSG Msg;

 HWND hWnd;

 WNDCLASSEX WndClsEx;

 LPCTSTR ClsName = L"ResFund";

 LPCTSTR WndName = L"Resources Fundamentals";

 // Create the application window

 WndClsEx.cbSize = sizeof(WNDCLASSEX);

 WndClsEx.style = CS_HREDRAW | CS_VREDRAW;

 WndClsEx.lpfnWndProc = WndProcedure;

 WndClsEx.cbClsExtra = 0;

 WndClsEx.cbWndExtra = 0;

 WndClsEx.hIcon = LoadIcon(hInstance,

 MAKEINTRESOURCE(IDI_RESFUND2));

 WndClsEx.hCursor = LoadCursor(NULL, IDC_ARROW);

 WndClsEx.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);

 WndClsEx.lpszMenuName = NULL;

 WndClsEx.lpszClassName = ClsName;

 WndClsEx.hInstance = hInstance;

 WndClsEx.hIconSm = LoadIcon(hInstance,

 MAKEINTRESOURCE(IDI_RESFUND2));

 // Register the application

 RegisterClassEx(&WndClsEx);

 // Create the window object

 hWnd = CreateWindowEx(0,

 ClsName,

 WndName,

 WS_OVERLAPPEDWINDOW,

 CW_USEDEFAULT,

 CW_USEDEFAULT,

 CW_USEDEFAULT,

 CW_USEDEFAULT,

 NULL,

 NULL,

 hInstance,

 NULL);

 // Find out if the window was created

 if(!hWnd) // If the window was not created,

 return FALSE; // stop the application

 // Display the window to the user

 ShowWindow(hWnd, nCmdShow);// SW_SHOWNORMAL);

 UpdateWindow(hWnd);

 // Decode and treat the messages

 // as long as the application is running

 while(GetMessage(&Msg, NULL, 0, 0))

 {

 TranslateMessage(&Msg);

 DispatchMessage(&Msg);

 }

// return Msg.wParam;

 return 0;

}

//---

LRESULT CALLBACK WndProcedure(HWND hWnd, UINT Msg,

 WPARAM wParam, LPARAM lParam)

{

 switch(Msg)

 {

 case WM_DESTROY:

 PostQuitMessage(WM_QUIT);

 break;

 default:

 // Process the left-over messages

 return DefWindowProc(hWnd, Msg, wParam, lParam);

 }

 // If something was not done, let it go

 return 0;

}

//---

7. Execute the application to test it

Menu Creation

A menu is one of the text-based resources. It is created directly in the rc file. As with

other resources, the process of creating a menu depends on the environment you are

using. If you are using Borland C++ Builder, you can open your rc file and manually

create your menu.

If you are using Microsoft Visual C++, you can use the built-in menu editor. In this

case, the actual text that defines and describes the menu would be automatically added

to the rc file.

 Practical Learning: Creating a Menu

1. On the main menu, click Project -> Add Resource...

2. In the Insert Resource dialog box, click Menu and click New

3. While the first menu item is selected, type &File

4. Click the next empty item under File. Type &New

5. In the Properties window, click the ID edit box, type IDM_FILE_NEW and

press Enter

6. Click the next empty item under New and type &Open

7. In the Properties window, click the ID edit box, type IDM_FILE_OPEN and

press Tab

8. Click the next empty item under Open and type -

9. Click the next empty item under the new separator and type E&xit

10. In the Properties window, click the ID edit box, type IDM_FILE_EXIT and

press Tab. In the Caption edit box, press Enter

11. Click the next empty item on the right side of File. Type &Help

12. Click the next empty item under Help and type &About

13. In the Properties window, click the ID edit box, type IDM_HELP_ABOUT and

press Tab. In the Caption edit box, and press Enter

14. In the ResourceView tab of the Workspace, under the Menu node, click

IDR_MENU1. In the Menu Properties window, change the ID

to IDR_MAINFRAME

15. Open the Exercise.cpp source file and change the lpszMenuName member of the

WndClsEx variable as follows:

WndClsEx.lpszMenuName =

MAKEINTRESOURCE(IDR_MAINFRAME);

16. To test the application, press Ctrl + F5 and press Enter

17. Return to your programming environment

